Выбрать главу

После того, как выходной ivs-файл сформирован, можно приступать к его анализу. В принципе, это можно делать и параллельно вместе с перехватами пакетов, но для простоты мы рассмотрим последовательное выполнение процедур перехвата и анализа.

Для анализа сформированного ivs-файла потребуется утилита aircrack.exe, которая запускается из командной строки. В нашем случае (рис. 3) мы использовали следующие параметры запуска:

aircrack.exe — b 00:13:46:1C:A4:5F — n 64 —i 1 out.ivs.

Рис. 3. Запуск программы aircrack.exe из командной строки

В данном случае «-b 00:13:46:1C:A4:5F» — это указание MAC-адреса точки доступа, «-n 64» — указание длины используемого ключа шифрования, «-i 1» — индекс ключа, а «out.ivs» — это файл, который подвергается анализу.

Полный перечень параметров запуска утилиты можно посмотреть, набрав в командной строке команду aircrack.exe без параметров.

В принципе, поскольку такая информация, как индекс ключа и длина ключа шифрования, как правило, заранее неизвестна, обычно используется следующий упрощённый вариант запуска команды: aircrack.exe out.ivs.

Результат анализа ivs-файла показан на рис. 4. Вряд ли строка KEY FOUND! Нуждается в комментариях. И обратите внимание, что секретный ключ был вычислен всего за 3 секунды.

Рис. 4. Результат анализа ivs-файла

Мы проводили множество экспериментов с использованием и 128-битного ключа, и с различными параметрами запуска команды aircrack.exe, но во всех случаях время, за которое вычислялся секретный ключ, не превосходило 7 секунд.

Вот так просто и быстро проводится вскрытие беспроводных сетей с WEP-шифрованием, и говорить о «безопасности» сетей в данной случае вообще неуместно. Ну, действительно, можно ли говорить о том, чего на самом деле нет!

Ах да, чуть не забыли. В самом начале мы упомянули, что во всех точках доступа имеются ещё такие возможности, как использование режима скрытого идентификатора сети и фильтрации по MAC-адресам, которые призваны повысить безопасность беспроводной сети. Но не будьте оптимистами — это не спасает.

На самом деле, не таким уж и невидимым является идентификатор сети даже при активации этого режима на точке доступа. К примеру, уже упомянутая нами утилита airodump всё равно покажет вам SSID сети, который впоследствии можно использовать для создания профиля подключения к сети (причём несанкционированного подключения).

Ну а если говорить о такой наивной мере безопасности, как фильтрация по MAC-адресам, то здесь вообще всё очень просто. Существует достаточно много разнообразных утилит и под Linux, и под Windows, которые позволяют подменять MAC-адрес сетевого интерфейса. К примеру, для несанкционированного доступа в сеть мы подменяли MAC-адрес беспроводного адаптера с помощью утилиты SMAC 1.2 (рис. 5). Естественно, что в качестве нового MAC-адреса используется MAC-адрес авторизованного в сети клиента, который определяется всё той же утилитой airodump.

Рис. 5. Подмена MAC-адреса беспроводного адаптера

Итак, преодолеть всю систему безопасности беспроводной сети на базе WEP-шифрования не представляет никакого труда. Возможно, многие скажут, что это малоактуально, поскольку WEP-протокол давно умер и его просто не используют. Ведь на смену ему пришёл более стойкий протокол WPA. Однако не будем торопиться с выводами. Отчасти это действительно так, но только отчасти. Дело в том, что в некоторых случаях для увеличения радиуса действия беспроводной сети разворачиваются так называемые распределённые беспроводные сети (WDS) на базе нескольких точек доступа. Но самое интересное заключается в том, что эти самые распределённые сети не поддерживают WPA-протокола, и единственной допустимой мерой безопасности в данном случае является применение WEP-шифрования. Ну а взламываются эти WDS-сети абсолютно так же, как и сети на базе одной точки доступа.

Теперь посмотрим, как обстоят дела с сетями на базе WPA-шифрования.

Взлом беспроводной сети с протоколом WPA

Собственно, сама процедура взлома сетей с протоколом WPA мало чем отличается от уже рассмотренной процедуры взлома сетей с WEP-протоколом.

На первом этапе используется всё тот же сниффер airodump. Однако есть два важных аспекта, которые необходимо учитывать. Во-первых, в качестве выходного файла необходимо использовать именно cap-файл, а не ivs-файл. Для этого в настройке утилиты airodump на последней вопрос «Only write WEP IVs (y/n)» отвечаем «нет».

Во-вторых, в cap-файл необходимо захватить саму процедуру инициализации клиента в сети, то есть придётся посидеть в «засаде» с запущенной программой airodump. Если используется Linux-система, то можно провести атаку, которая заставит произвести процедуру переинициализации клиентов сети, а вот под Windows такая программка не предусмотрена.

После того, как в cap-файл захвачена процедура инициализации клиента сети, можно остановить программу airodump и приступить к процессу расшифровки. Накапливать перехваченные пакеты в данном случае нет необходимости, поскольку для вычисления секретного ключа используется только пакеты, передаваемые между точкой доступа и клиентом в ходе инициализации.

Для анализа полученной информации используется все та же утилита aircrack, но с несколько иными параметрами запуска. Кроме того, в директорию с программой aircrack придётся установить ещё один важный элемент — словарь. Такие специализированные словари можно найти в Интернете, например, по ссылке http://ftp.se.kde.org/pub/security/tools/net/Openwall/wordlists/.

После этого запускаем из командной строки программу aircrack (рис 6), указывая в качестве выходного файла cap-файл (например, out. cap) и название словаря (параметр — w all, где all — название словаря).

Рис. 6. Пример запуска программы aircrack.exe из командной строки

Программа перебора ключей из словаря даёт очень интенсивную нагрузку на процессор, так что если для этого используется маломощный ПК, то на эту процедуру потребуется много времени. Если же для этого используется мощный многопроцессорный сервер или ПК на базе двухъядерного процессора, то в качестве опции можно указать количество используемых процессоров. К примеру, в нашем случае использовался новейший двухядерный процессор Intel Pentium Extreme Edition Processor 955 с поддержкой технологии Hyper-Threading (четыре логических ядра процессора), поэтому в параметрах запуска программы мы использовали опцию «—p 4», что позволило утилизировать все четыре логических ядра процессора, причём каждое ядро утилизируется на 100 %. В результате после почти полутора часов работы программы секретный ключ был найден! (рис. 7.)

Рис. 7. Результат анализа cap-файла

Это, конечно, не несколько секунд, как в случае с WEP-шифрованием, но тоже неплохой результат, который прекрасно демонстрирует, что и WPA-PSK защита не является абсолютно надёжной. Причём результат взлома секретного ключа никак не связан с тем, какой алгоритм шифрования (TKIP или AES) используется в сети.