Выбрать главу

В линейном программировании эта образная очевидность характера перемещения книги относительно картофелины доказана математически строго для пространства n измерений. Алгоритм «симплекс метода» основан на том, что оптимальное решение задачи (4) лежит в одной из вершин n-мерного выпуклого многогранника и для его поиска необходимо последовательно пересмотреть значения функции Z в вершинах, перемещаясь из одной в другую вдоль его ребер в направлении убывания функции Z.

Практически в каждой книге, в которой разсматри­вается линейное программирование и его применение для решения практических задач, излагается теория двойственности линейного программирования. Её смысл сводится к тому, что каждой задаче линейного програм­мирования математически объективно соответствует двойственная ей задача, и оптимальные решения обеих задач взаимно связаны друг с другом. По отношению к задаче (4) двойственная к ней записывается так:

По отношению к экономике это — «задача рентабельности».

С начала 1950-х гг. известна теорема: если в опти­мальном решении прямой задачи неравенство № k вы­полняется как строгое, т.е. имеет место соотношение >, а не = (либо < , а не =), то в оптимальном решении двойственной задачи значение соответствующей переменной равно нулю.

Также с начала 1950-х гг. известны экономические интерпретации теории двойственности. Обычно в них в качестве прямой задачи разсматривается некая задача продуктообмена, в которой переменные интерпретиру­ются как объёмы ресурсов, вовлекаемых в производ­ственный процесс. Тогда в качестве двойственной выступает задача рентабельности, в которой перемен­ные интерпретируются как некие цены (цены «некие», поскольку не во всех интерпретациях это реальные цены рынка) соответствующих ресурсов. Такая интерпретация: в прямой задаче пере­менные — объёмы; в двойственной задаче переменные — некие цены, — стала традиционной, общеизвестной, общеприня­той. Смотри, на­при­мер, Ю.П.Зай­ченко “Изследование операций”, Киев, “Вища школа”, 1979 г. — рядовой учебник для вузов; “Математическая экономика на персо­нальном ком­пью­тере” под ред. М.Кубонива пер. с япон­ского, М., “Финансы и статистика”, 1991 г., японское изд. 1984 г. — лик­без-справочник.

Приведённая теорема в них обретает экономическое выражение: если объём некоего ресурса в оптимальном решении прямой задачи превышает ограничения, заданные неравенствами, то цена ресурса в оптимальном решении двойственной задачи — ноль.

Но поскольку задача рентабельности также может разсматриваться в качестве прямой, то в этом случае приведённая теорема выражается следующим образом: если технологический процесс № k оказывается строго невыгодным с точки зрения оптимальных цен, то в оптимальном решении задачи продуктообмена интенсив­ность изпользования соответствующего технологическо­го процесса должна быть равна нулю.

Такая интерпрета­ция допустима по отношению ко всякой производствен­ной системе, не обладающей качеством самодоста­точно­сти производства потребляемой в ней продукции, при реше­нии задачи о наиболее выгодном с финансовой точки зрения участии в продуктообмене на рынке со сложив­шимся прейскурантом.

В случае описания аппаратом линейного программи­рования задач саморегуляции народ­ного хозяйства, в котором в каждой отрасли куль­тура произ­водства и технологическая база — объективная историчес­кая данность, применение этой интерпретации на прак­тике предопределяет уничтожение одной из незаменимых отраслей в собственном народном хозяй­стве, что ведёт к подчиненности внешним общественно-экономическим системам и их концепциям управления и/либо к народно­хозяйственной катастрофе.

Это означает, что в такого рода задачах нерента­бель­ность незаменимой отрасли — следствие либо превышения ею демографической избыточности произ­водства, либо в условиях демографической недостаточ­ности производства — выражение ошибок в настройке кредитно-финан­совой системы на саморегуляцию производства и разпределения по демо­гра­фически обусловленному спектру потребно­стей, вследствие чего отрасль стала жертвой взаимно-отраслевой конкуренции за “прибыль”.

Несмотря на эту оговорку, нет никаких формально-мате­ма­ти­ческих и экономических причин, чтобы в задачах управления производственно-потребительской системой государства или региона как целостностью (это предполагает разсмотрение взаимной обусловленности производства и потребления) искать иные интерпретации переменных в задаче продуктообме­на и задаче рентабельности. В задаче продуктообмена переменные — валовые объёмы произ­водства, вектор X. В задаче рентабельности переменные — реальные цены рынка на продукцию спектра производства X, т.е. век­тор P.