Выбрать главу

Мне удалось найти общий метод «решения» любого номера, не выходя за рамки, очерченные в начале этой заметки. Для этого воспользуемся тождествами:

tg (arcctg х) = 1/х, cos(arctg х) = 1/(√(1 + δ2)

Они получаются из равенств:

tg (arcctg х) = 1/ctg(arcctg x) = 1/x,

sin(arctg x)/cos(arctg x) = x,

sin2(arctg x) + cos2(arctg x) = 1.

Решая систему из двух последних уравнений, получим искомое тождество.

Обозначив левые части этих равенств соответственно через f1(x) и f2(x), а композицию этих функций f1(f2(x)), через f(x), получим: f(N) = (1 + N)1/2, откуда окончательно

f(√N)= √(1 + N2)

(или tg arcctg cos arctg = √(1 + N)

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау-Горобца. Возьмем, к примеру, один из «неподдающихся» номеров: 59–58. Тогда решение будет таким:

5 + √9 = 5 + f(√8), где f(√8) = √9 = 3.

Разумеется, приведенный универсальный метод — не единственный, можно было бы придумать еще несколько подобных. Однако все они так или иначе используют тригонометрические тождества. Поэтому интересно, усложняя задачу, попытаться найти общее «решение» игры, не используя тригонометрию.

Предлагаю одну из возможностей. Коль скоро разрешается пользоваться факториалом, то почему бы не воспользоваться знаками [] и {} соответственно целой и дробной части числа (как и факториал, они не входят в программу обычных школ, но широко применяются в элементарной математике и, как правило, их проходят в «продвинутых» классах и школах). Напомню, что [х] — это наибольшее целое число, не превосходящее х (например, [4,32] = 4, [—2,8] = —3 и т. д.), [х] = х — [х] (так, {1,2} = 0,2, (—0,6] = 0,4).

Введение только этих функций сразу дает несколько тривиальных решений нашей задачи. Например, достаточно взять дробную часть от обоих двузначных чисел и в результате получить в обоих случаях ноль.

А ведь можно еще использовать известные со школьной скамьи знаки модуля, длины вектора (скажем, |√2; √7 |= √(2 + 7) = 3) и так далее.

*****

ИГРА ЛАНДАУ В НОМЕРА ПРОДОЛЖАЕТСЯ

(Редакционная статья в журнале Наука и жизнь № 6, 2001.

Ее автор — зав. физико-математическим отделом журнала С.Д. Транковский)

Заметка доктора геолого-минералогических наук Бориса Соломоновича Горобца «Игра Ландау в номера» (см. Наука и жизнь № 1, 2000 г.) вызвала у читателей журнала огромный интерес. Напомним, в чем состояла суть игры.

Предлагалось из цифр двух пар случайных чисел составить равенство, используя только знаки арифметических действий и тригонометрических функций. Академик Л. Д. Ландау придумал эту игру, чтобы скоротать время при поездках в машине, и использовал в ней номера попутных автомобилей. Он признался, что некоторые номера решению не поддаются. В статье был приведен их перечень.

Редакция получила несколько десятков писем с различными вариантами решений «неподдающихся» номеров; часть их была опубликована (см. Наука и жить № 10. 2000 г.; № 1, 2001 г.). Общий метод решения любого номера, отличающийся от приведенного Б. Горобцом, дал математик С. Федин, давний автор журнала (см. Наука и жизнь № 4, 2000 г.). Сегодня мы продолжаем обзор новых читательских писем.

Наименьшее затруднение по-прежнему вызывает пара 58–59: решение 5∙8 = 5!/√9 прислали С. Медведев (г. Егорьевск), В. Идпатулин (г. Ижевск), Е. Аникин (г. Мийск), С. Масилевич (г. Солигорск) и В. Донченко (г. Ростов-на-Дону); решение 5!/8 = 5√9 — К. Кузнецов (Москва), А. Залесов (Москва), семья Аюповых (пришло по электронной почте без адреса), А. Пикапов (г. Новокуйбышевск). А доцент Днепропетровского университета А. Дышлис отметил, что эти решения симметричны: первое при умножении обеих частей равенства на √9/8 превращается во второе.

Е. Головин (г. Сыктывкар) прислал сразу несколько решений, часть из которых, к сожалению, некорректна — цифры в них идут не в том порядке. Верных решений было три:

27 — 37: 2 7 = (sin arcctg √3)7, так как arcctg √3 = π/6, sin π/6 = 1/2;

59 — 58: —lg — (5–9) = lg sin arcctg √(-(5–8));

47 — 97: Ig sin arcctg √-(4 — 7) = — lg(9–7).

He менее интересные решения прислали и уже упомянутые выше авторы. К. Кузнецов, студент факультета вычислительной математики и кибернетики МГУ, дал самые простые варианты из всех присланных:

47 — 73: √4 ln √7 = ln (7!/((3!)!);