Выбрать главу
Живой телеграф

Помните опыты с лягушечьей лапкой, которые проводил Луиджи Гальвани и которые вызвали ожесточенные споры его с Алессандро Вольта? Шестьдесят лет спустя после этих опытов, то есть в середине прошлого столетия, было доказано, что живые нервные и мышечные клетки обладают электрическим зарядом и могут генерировать электрический ток. Развилась целая отрасль биофизики — электрофизиология, изучающая биоэлектрические процессы, протекающие в живых тканях.

В более поздних опытах ученым удалось выделить единичное нервное волокно и во всех подробностях изучить его свойства как проводника биоэлектричества.

Оказалось, что если приложить к подводящим электродам короткий электрический импульс, то измерительный прибор ничего не покажет до тех пор, пока величина импульса не достигнет определенного — «порогового» — значения. Когда «порог» будет превзойден, вдоль по нерву пробежит электрический сигнал длительностью в несколько тысячных долей секунды. Скорость движения этого сигнала зависит от толщины волокна и может достигать 100–150 метров в секунду.

При дальнейшем увеличении возбуждения размер и форма биоэлектрического сигнала не меняются. Нервное волокно проводит сигнал по принципу «все или ничего».

Если к подводящим электродам последовательно прикладывать ряд импульсов, то нервное волокно будет их проводить в форме одинаковых сигналов при условии, что время между подачей очередных импульсов не будет меньше одной-двух тысячных долей секунды. Если попытаться уменьшить интервал между импульсами, то на второй импульс реакции не будет: нервному волокну нужно некоторое время, в течение которого оно восстановит свои проводящие свойства.

Итак, точно установлено, что передача информации по нервной сети осуществляется стандартными однотипными сигналами. Единичное волокно может проводить по 300 сигналов в секунду; если секундный промежуток разделить на 300 интервалов, то в пределах каждого интервала возможны два состояния: «есть сигнал», «нет сигнала». Можно сказать, что по нервному волокну информация передается в двоичном коде, а максимальную пропускную, способность нервного волокна можно оценить величиной в 300 бит.

Почему природа избрала такой элементарный «невыразительный» способ передачи информации в форме стандартных электрических импульсов? Почему бы ей, например, не использовать телефонный способ передачи информации, такой богатый интонациями, способный сохранить чувственную окраску сообщения, выразительные повышения и понижения тона, многозначительные паузы?

Говоря словами радиотехники, почему природа использовала частотную, а не амплитудную модуляцию сигнала?

Нервное волокно, как это ни странно, очень плохо проводит электричество. Его сопротивление току достигает 25 мегом на 1 миллиметр. Обычный телеграфный провод имеет такое сопротивление на длине достаточной, чтобы пересечь целый континент. Естественно, при таком большом омическом сопротивлении сигнал, бегущий по нерву, очень быстро ослабляется.

Как долго бился Морзе, пытаясь увеличить дальность передачи телеграфных сигналов! Он нашел решение этой задачи, придумав специальное устройство — реле, способное усилить простой сигнал — посылку тока. Ни он и никто из его современников не знали, что это изобретение было оригинально лишь с точки зрения конструктивного выполнения, а что касается идеи реле, то она, как и двоичный код, была использована природой миллионы лет назад, на ранних стадиях развития животных.

Оболочки аксонов — нервных волокон — содержат на каждом миллиметре своей длины особые сужения — их называют перехватами Ранвье, по имени французского биолога Луи Ранвье, который еще в 1878 году впервые их описал, конечно не зная, какой цели они служат. Каждый из этих перехватов представляет собой нечто вроде биологического реле. Вдоль волокна, идущего от спинного мозга к пальцу руки, располагается до 800 таких релейных станций. Каждая из них усиливает биоэлектрические сигналы, ослабляемые большим сопротивлением биоэлектрического проводника.

При такой конструкции полностью исключается возможность передачи информации методом амплитудной модуляции. Действительно, представьте себе, что каждая релейная станция восстанавливает сигнал не абсолютно точно, а, скажем, даже на 99 процентов. Тогда, пройдя 800 реле, сигнал уменьшится до (0,99)800 = 1/3000 своей первоначальной величины. Если при восстановлении он будет не уменьшаться, а увеличиваться каждый раз на 1 процент, то в результате он в 3000 раз превзойдет начальную величину. Самые малые погрешности в работе такой системы неизбежно приведут к существенным искажениям величины и формы сигнала: интонации потеряют свою первоначальную окраску и выразительность, собеседники перестанут понимать друг друга, мышцы перестанут подчиняться мозгу.