Выбрать главу

Наверное, несколько абстрактно и непривычно выглядят рассуждения о симметричном и несимметричном положении шарика, о «скатывании» полей с энергетических горок. Но ничего не поделаешь, даже в простейшем изложении от читателя здесь требуется некоторая внимательность и фантазия.

Теперь после «скатывания» уже переносчики слабого взаимодействия приобрели массу. Эта масса делает слабое взаимодействие чрезвычайно близкодействующим, а безмассовый фотон по-прежнему обеспечивает электромагнетизму дальнодействие. Теперь и не узнать былой симметрии. Та симметрия, которая была явной и очевидной при больших температурах, теперь нарушилась и стала скрытой.

Вот почему физикам было так трудно ее распознать в условиях сегодняшней Вселенной. Но они это сумели сделать! За создание единой теории электрослабых взаимодействий С. Вайнберг, Ш. Глэшоу и А. Салам были в 1979 году удостоены Нобелевской премии.

Теория рассмотренных процессов в самом начале расширения Вселенной, когда были огромные температуры, была предложена советским физиком Д. Киржницем. Позднее эта теория разрабатывалась им совместно с молодым физиком А. Линде.

Не все детали описанной выше картины подтверждены с одинаковой степенью надежности. Так, пока не обнаружены хиггсовские массивные частицы. По крайней мере один сорт таких тяжелых частиц должен остаться после описанных коллизий, и он должен существовать в сегодняшней Вселенной. Хотя обнаружить подобные частицы в эксперименте очень трудно, но физики верят в успех подобных поисков.

Обратимся теперь к сильным взаимодействиям. Частицы, испытывающие сильное взаимодействие, — кварки, и не испытывающие его — лептоны, выглядят по этому признаку как совершенно различные, их превращение друг в друга кажется невозможным.

Сильное взаимодействие, как уже было сказано, связано с наличием у кварков «цветных» зарядов, и поэтому его иногда называют цветной силой.

Начнем с рассмотрения следующего вопроса. Почему все же кварки находятся в связанном состоянии внутри бариона или мезона? Разве нельзя придать кварку достаточно большую энергию, оторвать его от других кварков (как бы сильно они ни были связаны друг с другом) и заставить вылететь из бариона?

Как мы увидим, парадоксальность ситуации заключается в том, что кварки почти совсем не связаны, когда находятся внутри адрона (то есть бариона или мезона), они свободны!

Для того чтобы разобраться в этом удивительном обстоятельстве, вернемся ненадолго к электромагнитному взаимодействию.

Рассмотрим заряженную частицу, например, позитрон в вакууме. Мы уже знаем, что в вакууме непрерывно происходит рождение и уничтожение электрон-позитронных пар — «кипение» вакуума. Таким образом, наш изолированный позитрон в действительности окружен возникающими и исчезающими положительными и отрицательными зарядами. Несмотря на кратковременность существования этих зарядов, они успевают обменяться с позитроном виртуальными фотонами, то есть провзаимодействовать. При этом отрицательные заряды будут притягиваться к позитрону, а положительные отталкиваться. В результате вокруг позитрона все время будет некоторый небольшой избыток отрицательного заряда, который частично экранирует положительный заряд позитрона.

Явление это получило название поляризации вакуума. Она приводит к тому, что другие удаленные реальные частицы чувствуют заряд не «голого» позитрона, а частично заэкранированного — одетого в «шубу» из противоположных по знаку зарядов, то есть проявление положительного заряда позитрона будет ослаблено. Этот «ослабленный» заряд позитрона и измеряется в обычных опытах.

Если теперь пробные реальные частицы подносить к позитрону все ближе и ближе, то они будут проникать в глубь экранирующей «шубы». Между пробным зарядом и «голым» позитроном будет оставаться все более тонкий слой, а значит, экранирование станет ослабевать.

Таким образом, на малых расстояниях эффективный заряд позитрона становится больше, то есть электромагнитное взаимодействие усиливается по сравнению с простым законом Кулона, если в него подставить заряд позитрона, измеренный со сравнительно большого расстояния.

Таков вывод квантовой электродинамики — науки об электромагнитном взаимодействии элементарных частиц.

Вернемся теперь к цветным зарядам и обусловленным ими сильным взаимодействиям. Кстати, теория, описывающая эти взаимодействия, называется, по аналогии с квантовой электродинамикой, квантовой хромодинамикой.