Выбрать главу

Ясно, что ничтожная протяженность в дополнительных измерениях в обычных условиях сравнительно небольших энергий и не позволяет обнаружить эти измерения. Они проявляются только косвенно в виде разнообразия многих сил и зарядов частиц.

Суперсимметрия предполагает существование целого ряда новых частиц. Мы подчеркивали, что суперсимметрия объединяет формионы и бозоны. Каждому полю, каждой частице здесь соответствует суперпартнер. Так, помимо гравитона — переносчиков гравитационных сил со спином 2, являющихся бозонами, теория включает еще также гравитино — частицы со спинами 3/2 (то есть фермионы), которые в обычных условиях обладают массой (вероятно, порядка ста или тысячи масс протона). Фотону соответствуют тяжелые фотино со спином 1/2 (масса их, вероятно, также порядка ста или тысячи масс протона) и т. д. Все эти частицы пока не открыты.

Существуют теории с весьма сложными и экзотическими наборами частиц. Мы, однако, вынуждены здесь остановиться в нашем увлекательном путешествии в область, еще в значительной степени неизведанную.

Наше краткое знакомство с удивительным микромиром позволит теперь рассмотреть, что было в самом начале расширения мира, то есть как взорвалась наша Вселенная.

В двух предыдущих и в нескольких последующих главах мы много говорим о достижениях современной физики и астрофизики и не так уж часто обращаемся к самому понятию времени. На первый взгляд это кажется странным в книге, главным героем которой является время. Но это только на первый взгляд. Необычные свойства времени, раскрывающие его суть, проявляются в процессах, протекающих в самых глубинах микромира и в далеких просторах космоса. Только достаточно подробное знакомство с этими процессами позволит нам продолжить рассказ о времени.

Истоки

Мы отправляемся теперь к самым истокам реки времени. Что же произошло в самом начале? Что является причиной начала расширения?

В разделе «К истокам реки времени» мы пояснили, что огромное давление горячего вещества в самом начале не может быть причиной больших скоростей разлета вещества, ибо в однородной Вселенной нет перепада давления, который только и создает силу, ведущую к разлету. Что же тогда вызвало «первотолчок»?

Ключ к пониманию «первотолчка» лежит в существовании при больших плотностях и температурах особого вакуумноподобного состояния материи.

Мы уже познакомились с несколькими вакуумноподобными состояниями в разделе «Великое объединение». При температурах «суперобъединения» возникает, как считают теоретики, совсем уникальное вакуумноподобное состояние, имеющее огромную плотность энергии и соответствующую ей гигантскую плотность массы. Эта плотность изображается таким числом: единица с девяносто четырьмя (!) нулями граммов в кубическом сантиметре. Огромность приведенного числа трудно вообразить. Как мы подчеркивали в разделе «Великое объединение», у любого вакуума, если у него есть плотность массы, должно быть и огромное отрицательное давление.

В соответствии с теорией тяготения Эйнштейна, гравитация создается не только массой, но и давлением. Обычно давление невелико, и связанная с ним гравитация пренебрежимо мала. В случае вакуумноподобного состояния картина получается совсем иная, ибо давление огромно и гравитация, создаваемая им, в этом случае превышает гравитацию, создаваемую массой. Но ведь давление вакуума отрицательно, значит, вместо тяготения будет возникать антитяготение — гравитационное отталкивание! И в этом все дело. Именно рассмотренное явление и есть ключ к пониманию «первотолчка». При огромной начальной плотности и температуре «суперобъединения» антигравитационные силы вакуума создают мощное расталкивание всех частиц материи. Эти частицы приобретают гигантские начальные скорости разлета. От чего процесс необычайно быстрого расширения Вселенной получил название «раздувания» или, используя английский термин, — «инфляции».

Не менее важно, что первичное вакуумноподобное состояние было крайне неустойчивым. Оно существовало только в течение примерно одной стомиллионной миллиардной миллиардной миллиардной доли секунды! Затем распалось, и его плотность массы превратилась в «обычные» суперэлементарные частицы, о которых мы говорили в предыдущих разделах, обладавшие гигантскими энергиями. Так из вакуумноподобного состояния рождалась горячая Вселенная с температурой в этот момент в миллиард миллиардов миллиардов градусов.

Частицы, родившиеся из первичного вакуума, имели большие начальные скорости разлета из-за действия сил антигравитации. Но вместе с распадом «супервакуума» эти силы исчезли и заменились обычным тяготением. Разлетающееся родившееся горячее вещество много миллиардов лет спустя, став очень разреженным и охладившись, дробится силами взаимного тяготения на куски, из которых рождались затем галактики, звезды и их системы. Физические процессы, которые при этом происходили, подробно описываются во многих книгах, в том числе и популярных. Поэтому мы лишь коротко скажем о них.