Il est maintenant clair que l’écrasante majorité des éléments chimiques ne se trouvent qu’en quantités infimes dans l’écorce terrestre. Pour isoler les composés de bon nombre d’entre eux, on est obligé de recourir à des manipulations qui rappellent celles que nous avons décrites au cours des chapitres précédents. Voici donc à nouveau des décimales, à nouveau des quantités infinitésimales, à nouveau la recherche du grand dans du petit…
Des excavations dans une cour
Je voudrais relater un incident malencontreux qui se produisit un jour dans un institut de recherches mais qui se termina, fort heureusement, le mieux possible.
Tout établissement scientifique possède plusieurs coffres-forts dans lesquels sont enfermés les appareils en argent et en platine, les sels d’or et d’autres métaux précieux. Il y avait des coffres-forts de ce genre dans l’institut qui nous intéresse. L’un d’eux attirait les regards respectueux des collaborateurs de l’établissement, car il contenait un quart de gramme de radium, quantité énorme si l’on considère la rareté de ce métal.
A tous ceux que la question intéressait, on précisait volontiers que le radium s’y trouvait non pas à l’état métallique mais en solution aqueuse d’azotate contenue dans un épais récipient en plomb, métal arrêtant les rayons émis par le radium. Le radium était tellement nécessaire aux diverses recherches que les collaborateurs de l’institut devaient s’inscrire sur une liste auprès du chef de laboratoire en attendant avec impatience le jour où ils pourraient enfin se livrer à leurs expériences.
L’incident se produisit au moment où l’institut déménageait dans un nouvel édifice. Tous les collaborateurs étaient en proie à l’agitation coutumière aux déménagements : ils emballaient hâtivement l’appareillage scientifique dans des caisses mal ajustées, se donnaient des coups de marteau sur les doigts, redressaient des clous tordus, bref « aidaient » l’équipe de déménageurs. Ils avaient tous hâte de se remettre au travail dans le nouvel édifice.
Le chaos qui régnait alors peut seul expliquer (mais non excuser !) le fait que le chef de laboratoire, parti en quête de clous, sortit sans prendre la précaution de fermer le coffre-fort. Il ne partait « que pour une petite minute » ! Mais au lieu d’une minute, son absence en dura dix, laps de temps largement suffisant pour ce qui se produisit…
L’un dos déménageurs entra dans la pièce. Il n’y restait plus que deux grosses caisses trop lourdes pour lui seul. Afin de ne pas perdre de temps, il décida de descendre un cylindre métallique qu’il remarqua dans le coffre-fort largement ouvert. Le cylindre était assez pesant et il y remuait quelque chose. Le déménageur dévissa le couvercle et s’aperçut que le cylindre contenait un liquide. « Probablement de l’alcool », pensa-t-il. Mais ce liquide n’avait aucune odeur et selon toute vraisemblance, ainsi que l’œil exercé du déménageur eut tôt fait de s’assurer, c’était de l’eau.
Lorsque le chef de laboratoire se représenta par la suite ce qui se produisit dans les minutes qui suivirent, il fit la grimace et secoua la tête comme si on lui avait versé de l’eau glacée dans le cou. Car le déménageur, prenant une brusque décision, s’approcha de la fenêtre et versa le liquide dans la cour de l’institut. Il revissa ensuite le couvercle et descendit tranquillement le cylindre dans un camion.
Une demi-heure après, le déménageur jurait ses grands dieux qu’il n’avait jamais entendu parler de radium et qu’il était bien certain d’avoir versé de l’eau.
Deux jours plus tard des excavatrices firent leur apparition dans la cour de l’institut. Toute la terre fut chargée dans des camions et expédiée dans une usine de traitement de minerais de radium. Les responsables de ces travaux « de sauvetage » peu communs tenaient à chaque parcelle de la terre argileuse qui recouvrait auparavant la cour de l’institut.
Le radium fut extrait du sol sans difficultés et expédié à l’institut. Est-il besoin d’ajouter que cette fois-ci la garde du métal précieux fut confiée non pas au chef de laboratoire distrait mais à un autre chercheur ?
Cette histoire permettra peut-être au lecteur à se représenter dans une certaine mesure les difficultés auxquelles se heurtent les chercheurs et le personnel industriel travaillant à l’obtention des éléments rares.
Le radium est un métal des plus rares. Tellement rare que la terre d’une vaste cour imprégnée d’une solution d’un quart de gramme de sel de radium paraît en contenir des quantités considérables car d’ordinaire on doit se contenter de minerais bien plus pauvres.
D’autres éléments suivent d’assez près le record de rareté du radium ; le rhénium, par exemple. Nous aurons à reparler en détail de cet élément qui prend de jour en jour une place accrue dans la technique moderne. L’extraction d’un kilo de rhénium des minerais les plus riches exige un chargement de six cents wagons de chemin de fer !
Actuellement, à l’écholle industrielle, le gallium est extrait de la cendre de certains types de houille. Si une telle cendre en contient plus de deux millièmes pour cent — vingt grammes par tonne ! — elle est considérée comme excellente pour l’extraction du gallium.
On peut en dire autant de tous les autres éléments auxquels la nature n’a réservé qu’un étroit et peu confortable réduit dans la maison des éléments chimiques constituée par l’écorce terrestre.
En lisant ces lignes certains diront peut-être :
« Mais quoi, on aurait bien tort d’incriminer la nature. Si les éléments rares font tellement défaut, tant pis, laissons-les. Nous pouvons sans doute nous contenter des éléments que la nature a placés à notre disposition en quantités suffisantes. »
Cette conclusion est incorrecte surtout parce que les éléments chimiques rares et partant peu étudiés recèlent des propriétés si inattendues qu’elles rempliraient d’étonnement les auteurs, à l’imagination pourtant féconde, des œuvres de science-fiction.
Au cours de ce chapitre nous dirons ce qu’a apporté à la science et à la technique l’étude détaillée des propriétés de certains éléments auparavant peu connus. Ceux-ci serviront d’exemples permettant de se faire une idée de ce que réservent à la science et à la technique les expéditions dans les espaces peu explorés de l’« Antarctide chimique ».
Il est sans doute inutile de raconter chaque fois comment on isole les composés de tel ou tel élément rare. Toutes les méthodes auxquelles on a recours sont semblables à celles que nous avons décrites aux chapitres précédents. Ce qui est bien plus important, ce sont les propriétés de ces éléments et l’utilisation qu’on en fait actuellement ou qu’on en fera dans un avenir proche.
Le plus léger
Si j’avais à tourner un dessin animé de vulgarisation scientifique sur les éléments chimiques, je présenterai une compétition sportive entre les éléments, ce qui serait à la fois amusant et instructif. Nous y verrions une course entre le fluor à l’activité exceptionnelle et les autres éléments. Paresseux et maladroits les gaz inertes nous feraient souvent bien rire. L’agile petit hydrogène se déplacerait à une vitesse vertigineuse. Le mercure, pleurnicheur, verserait de grosses larmes. L’uranium, massif, s’avancerait d’un pas pesant.
Il est presque certain que la palme du nombre de records battus irait au lithium. Cet clément possède le poids atomique le plus faible de tous les métaux connus, seuls l’hydrogène et l’hélium ayant des poids atomiques inférieurs. La densité du lithium, de 15 fois inférieure à celle du fer et la moitié de celle du bois, lui vaudrait un second record. Les navires en lithium posséderaient un port exceptionnel… si ce métal n’avait line telle affinité pour l’eau. Deux adolescents n’auraient aucune peine à soulever une voiture en lithium si celui-ci n’avait une affinité extrême pour l’oxygène et l’azote de l’air.