Le calcul de ce que peut donner une pile à prométhium de la grosseur d’un œuf est sans doute simple affaire d’arithmétique. Le lecteur peut ici donner libre cours à son imagination : il risque peu dé se tromper. Mais pourquoi l’auteur n’en ferait-il pas autant (sans dépasser la mesure bien entendu) ? Du reste, s’agit-il bien là d’imagination. J’ai eu l’occasion de faire une conférence sur certaines réalisations de la chimie contemporaine devant un auditoire de jeunes. Je mentionnai, entre autres choses, les merveilleuses propriétés du prométhium. Le conférencier qui m’avait précédé, célèbre médecin soviétique spécialiste de la chirurgie du coeur, avait parlé des remarquables succès de la médecine soviétique. A la fin de la soirée il m’invita à passer chez lui et me posa des questions détaillées sur le prométhium et en particulier sur les piles. La raison de cet intérêt subi pour la nouvelle source d’énergie devint bientôt évidente. Il y a des années que les médecins de divers pays envisagent la création d’un cœur artificiel. Non pas de l’un de ces volumineux appareils à l’aide desquels on effectue des opérations sur le cœur, mais d’un organe artificiel que le malade pourrait porter sur lui en permanence. Un tel « malade » serait d’ailleurs en meilleure santé que la plupart des gens bien portants possédant un cœur ordinaire, car son cœur à lui ne connaîtrait aucune fatigue.
Cependant les divers projets de cœur artificiel portatif appartiennent encore au domaine de la semi-fantaisie. La difficulté majeure réside dans la source d’énergie. Notre cœur doit fournir un travail tellement intense que même une pile pesant un kilo ne suffirait à un cœur artificiel que pour un peu plus d’une heure.
A cet égard le prométhium peut jouer un rôle d’une portée exceptionnelle. Il est vrai que pour l’instant tout le prométhium dont disposent les laboratoires du monde entier ne suffirait probablement même pas pour un seul « moteur cardiaque ».
L’histoire de la science connaît cependant bon nombre d’exemples de métaux initialement rares dont le prix de revient baissa par la suite en quelques années vertigineusement. Lors de son séjour à Londres en 1889, Mendéléev reçut en cadeau une balance dont l’un des plateaux était en or et l’autre en un métal incomparablement plus précieux à l’époque, c’est-à-dire en… aluminium. Or, à peine cinquante ans plus tard, l’aluminium était devenu un matériau tout aussi ordinaire que le bois.
Après tout cela, je crains fort que le récit de l’usage « prosaïque » des autres éléments du groupe des terres rares ne paraisse ennuyeux. Je prie pourtant le lecteur de croire que l’importance colossale qu’acquièrent d’année en année les éléments des terres rares dans l’économie n’en sera pas pour autant diminuée.
L’addition de lanthanides à la fonte exerce un effet véritablement magique sur cet alliage habituellement cassant. Les éléments des terres rares atténuent considérablement la fragilité de la fonte tout en augmentant sa résistance dans la même proportion. On sait que la fonte ordinaire se prête difficilement au façonnage, mais si on y incorpore des métaux des terres rares, on peut même l’usiner sur un tour. La quantité de métal nécessaire est d’ailleurs infime et varie de trois cents grammes à deux kilos par tonne de fonte. L’essentiel est que pour cette opération les métaux des terres rares n’ont pas besoin d’être séparés les uns des autres : ils produisent tout l’effet désiré même ajoutés ensemble.
On a découvert ces dernières années que les éléments des terres rares pouvaient servir à la fabrication de verre de qualité convenant à la confection de lentilles de télescopes, de hublots de bathysphères et de récipients destinés à contenir des substances particulièrement pures.
L’intérêt des chercheurs pour les éléments jumeaux est tellement considérable que pas un mois ne s’écoule sans que ne viennent de nouvelles découvertes fondamentales dans ce domaine. On a récemment fait connaissance avec les propriétés peu communes du gadolinium. On s’est aperçu qu’il pouvait être utilisé pour l’obtention de températures excessivement basses : on place du sulfate ou du chlorure de gadolinium dans un gaz inerte et on le soumet à l’action d’un champ magnétique ; la température du sel s’élève et sa chaleur se communique au gaz ; ce dernier est ensuite évacué et l’effet du champ magnétique interrompu ; le gadolinium subit un abaissement de température considérable par rapport à sa température initiale.
En répétant plusieurs fois l’opération, les chercheurs sont parvenus à atteindre une température ne dépassant le zéro absolu que de deux dix-millièmes de degré.
Il y a cent ans on connaissait ou plutôt on devinait l’existence de bon nombre de lanthanides mais on ne savait pas en isoler les composés à l’état pur. A l’Exposition Universelle de Paris de 1900, on choisit d’illustrer les énormes réalisations de la chimie à l’aide d’échantillons d’éléments des terres rares à l’état pur. Il y a une quinzaine d’années la séparation de ces éléments était considérée comme une opération extrêmement difficile mais maintenant on peut obtenir des échantillons de lanthanides à l’état pur dans le laboratoire le plus ordinaire. N’importe quel assistant en est capable. Il trouvera toutes les instructions nécessaires dans les travaux bien connus publiés dans ce domaine et reproduits dans les manuels destinés aux élèves des établissements d’enseignement supérieur.
Ainsi, pour la première fois dans l’histoire géologique de notre planète, l’homme a troublé la touchante union des éléments des terres rares et brisé l’harmonie de la famille des métaux jumeaux.
Une vieille revue humoristique présenta un jour un dessin montrant la scène suivante : une dizaine de personnages barbus d’une ressemblance évidente avec d’éminents savants russes de l’époque traînaient vers une voie de chemin de fer un escargot qu’ils avaient attrapé au lasso et sur lequel était écrit le mot « science ». Ce dessin signifiait sans doute que le rythme du développement de la science s’accélérait. Je ne sais si un dessin analogue paraîtrait amusant de nos jours, mais ce dont je suis certain, c’est qu’il conviendrait de remplacer la locomotive par une fusée cosmique. L’histoire des éléments jumeaux que nous venons de raconter en est la meilleure confirmation.
La milliardième partie de l’écorce terrestre
Nous ne réussirons évidemment pas à parler de toutes les régions de l’« Antarctide chimique ». Le nombre des éléments qui, récemment encore, étaient hors de portée des chercheurs et de l’industrie est trop élevé. Mais il est certaines « taches blanches » qu’on ne saurait passer sous silence. Il est même impossible de n’en parler que brièvement.
C’est à une région de ce genre qu’appartient la 75e case de la classification périodique, celle du rhénium, le « benjamin » des éléments d’après la date de sa découverte. De tous les éléments que contient l’écorce terrestre, le rhénium a été le dernier à se dévoiler. Le symbole Re n’a pris la place du point d’interrogation de la 75e case qu’en 1925. Toutes les additions ultérieures dans la classification périodique sont dues à l’obtention d’éléments artificiels.