d) Остается еще одна и последняя идея, чтобы детерминант открыл нам свой логический секрет. А именно, мы взяли в нашем числе чисто количественную сторону и чисто фактическую, акты его полагания. Само число, однако, не есть ни только абстрактное количество без осуществляющих его актов полагания, ни только слепые акты полагания без осмысливающего их количества. Но не сразу понятно, как акты полагания могут в данном случае определить количество. Конкретно вопрос стоит так: как каждое из наших произведений определяется входящими в него актами полагания? Если этот вопрос будет решен относительно каждого произведения в отдельности, то тем самым он будет решен и относительно всей суммы произведений, т. е. относительно всего изучаемого нами числа.
Вопрос ставится не просто об отличии одного порядка сомножителей от другого, так как этот вопрос уже нами разрешен при помощи использования триадического шага в области актов полагания, т. е. при помощи получения всех возможных перестановок. Речь идет о том, как данный порядок сомножителей, взятый в целом, влияет на получаемое при этом количество, т. е. на их произведение. Другими словами, это произведение мыслится нами сейчас как неизвестное, как произведение каких–то неизвестных, и требуется узнать, как на это общее неизвестное повлияет тот или иной порядок этих неизвестных сомножителей.
Спросим себя: что означает тут та или иная перестановка сомножителей? И даже поставим вопрос еще уже. Не надо обсуждать общее отличие одной перестановки от другой, а достаточно пока отдавать себе отчет в простой замене одного сомножителя другим, носящей в теории детерминантов название транспозиции. В чем, стало быть, смысл транспозиции? Чтобы наш ответ на этот вопрос не показался странным, рассмотрим эту замену сомножителей в том их смысле, какой он имеет чаще всего для детерминантов, т. е. в смысле коэффициентов при неизвестных системы уравнений. Пусть, напр., мы имеем
Определяя из третьего уравнения
подставляя его в первое уравнение, мы заменяем одно неизвестное другим. В чем значение этой замены? В том, что мы исключили одно неизвестное из двух и тем получили возможность его найти. Но сделали мы это только благодаря тому, что на место одного неизвестного стало другое неизвестное, с другим знаком. И значит, определить одно неизвестное в этом случае есть не что иное, как некоторым образом превратить другое неизвестное в это первое с обратным знаком. Замена одного сомножителя другим в наших произведениях означала как раз то, что мы переходили к нахождению, к определению этих неизвестных сомножителей. Если теперь мы будем считать нашу основную перестановку 1, 2, 3 положи* тельной, то всякая другая перестановка будет положительной или отрицательной в зависимости от того, сколько у нас будет транспозиций. Если отсутствие всякой транспозиции оставляет перестановку положительной, то одна транспозиция сделает ее отрицательной, вторая, продолжая менять ее знак на обратный, вернет ее опять к положительности, а третья по той же причине сделает ее вновь отрицательной. Словом, тут мы приходим к той особенности детерминанта, которую мы отметили выше в его определении: если число инверсий в перестановке четное, то она положительная, а если это число нечетное, то она отрицательная.
Таким образом, диалектическая сущность того, что половина наших произведений оказалась отрицательной, сводится как раз к тому, что в данном случае мы их понимаем как неизвестные, которые должны быть найдены, определены при помощи той или иной перестановки их сомножителей, т. е. отрицательность этих произведений есть результат того, что общеколичественная сторона нашего анализируемого числа и система актов его полагания вступили одна с другой во всестороннее диалектическое взаимоопределение. Это сразу становится видно, как только мы воспользуемся детерминантами для решения системы уравнений. Минусы, с которыми входит половина всех произведений, составляющих детерминант, как раз определены тем, что мы переносили в разных уравнениях неизвестные с одной стороны на другую и потом подставляли в другие уравнения, перенося их после необходимых выкладок, может быть, и еще раз в другую сторону, чтобы отделить неизвестные от известных величин, получившихся в результате подстановок; другими словами, эти минусы вызваны именно тем, что мы приступили к решению уравнений и нахождению неизвестных, т. е. вознамерились найти непосредственный количественный смысл неизвестных при помощи определенной группировки их коэффициентов.
4. С внешней стороны детерминант производит довольно громоздкое впечатление. Этому способствуют также многие технические способы оперирования с детерминантами, находимые нами в математической практике. Напр., правило Сарруса для вычисления детерминанта удивляет своей внешней механичностью. Такова же и теорема Крамера для решения системы уравнений при помощи детерминантов. Внешняя громоздкость увеличивается учением о минорах, об адъюнктах, о сложении и умножении и т. д. Тем не менее должен быть какой–то простейший логический принцип для всей этой технической сложности, какая–то простейшая диалектическая категория, которая бы позволяла обнять все эти многочисленные числа и операции в одном простом единстве. Этот принцип и эту категорию мы и находим в синтезе количественно–смысловой и количественно–фактической сторон числа, в синтезе чистого количества с чистыми актами полагания, причем то и другое появляется здесь в диалектически развитом виде. Берется чистое количество в развитом виде, берется акт полагания в развитом виде, и дается синтез того и другого тоже в развитом виде. Диалектически же развитой мы считаем ту смысловую установку, которая прошла по крайней мере три диалектических шага.
Отсюда понятной является и нижеследующая схема диалектического развития понятия детерминанта. В этой схеме категории I, II и III и категории 1, 2, 3 связаны между собою элементарной диалектической триадой. Все же вместе связано тут как то целое, которое появляется в результате диалектического взаимоопределения двух главных элементов числа—количественного смысла и актов полагания, принципиально таящихся во всяком числе, но здесь призванных создать из своего взаимоопределения новую диалектическую категорию.
5. Необходимо заметить, что детерминант можно понимать и не чисто арифметически. Под арифметикой (§ 81) мы понимаем оперирование над непосредственными значениями чисел в отличие от их функциональных отношений, относимых нами к алгебре и анализу. Детерминанты могут в этом смысле иметь чисто арифметическую природу. Но существуют еще функциональные детерминанты, место рассмотрения которых в алгебре. Существуют детерминанты бесконечного порядка, у которых строки или столбцы обладают признаками сходящегося ряда. Место этих детерминантов, конечно, в анализе, равно как и рассмотрение детерминантов в целях решения системы уравнений относится к алгебре (в случае обыкновенных линейных уравнений) или к анализу (в случае дифференциальных линейных уравнений с постоянными коэффициентами).
1. Детерминант представляет собою наиболее зрелый диалектический продукт ставшей сущности арифметического числа, понимаемого как отдельное число. Однако ставшая сущность числа отнюдь не есть только отдельное число. Наоборот, ставшая сущность, как мы видели в § 120, есть остановившееся становление числа, а таковое всегда предполагает некоторую как бы объемность, т. е. множественность и раздробленность, или комбинацию, систему чисел. Детерминант возник на почве диалектики отдельного числа, а ставшая сущность числа есть комбинация чисел. Отсюда сам собой возникает переход от безразличной общности комбинации к ее единораздельной системе. И теперь должна быть на очереди не просто система чисел вообще, для которой известен только общий принцип ее построения (отношение, пропорция, ряд), но и система чисел как именно система, т. е. сиетема во всей положенности своих элементов. С другой стороны, поскольку наша диалектика уже достигла зрелости детерминанта, новая категория должна вместить в себе достигнутую ступень и новое понятие должно быть образовано на основе учения о детерминанте. Такой категорией и является матрица.