Таким образом, при использовании следующего инициализатора структуры не удастся обеспечить портируемость:
struct sembuf s = { 3, -1, SEM_UNDO };
Хотя этот инициализатор будет работать в Linux, он не станет работать в других реализациях, где поля в структуре sembuf определены в ином порядке. Чтобы инициализировать такие структуры портируемым образом, следует воспользоваться явно указанными инструкциями присваивания:
struct sembuf s;
s. sem_num = 3;
s. sem_op = -1;
s. sem_flg = SEM_UNDO;
Если применяется C99, то для написания эквивалентной инициализации можно воспользоваться новым синтаксисом:
struct sembuf s = {.sem_num = 3, sem_op = -1, sem_flg = SEM_UNDO };
Порядок следования элементов стандартных структур также придется учитывать, если нужно записать содержимое стандартной структуры в файл. Чтобы обеспечить в данном случае портируемость, мы не можем просто выполнить двоичную запись в структуру. Вместо этого поля структуры должны быть записаны по отдельности (возможно, в текстовом формате) в указанном порядке.
Использование макросов, которых может не быть во всех реализациях
В некоторых случаях макрос может быть не определен во всех реализациях UNIX. Например, широкое распространение получил макрос WCOREDUMP() (проверяет, создается ли дочерним процессом файл дампа ядра), но его определение в SUSv3 отсутствует. Следовательно, этот макрос может быть не представлен в некоторых реализациях UNIX. Чтобы для обеспечения портируемости преодолеть подобные обстоятельства, можно воспользоваться директивой препроцессора языка C #ifdef:
#ifdef WCOREDUMP
/* Использовать макрос WCOREDUMP() */
#endif
Отличия в требуемых заголовочных файлах в разных реализациях
В зависимости от реализации UNIX будут различаться списки необходимых прототипу заголовочных файлов с различными системными вызовами и библиотечными функциями. В данной книге показываются требования применительно к Linux и обращается внимание на любые отклонения от SUSv3.
В некоторых функциях, кратко рассматриваемых в книге, показан конкретный заголовочный файл, сопровождаемый комментарием /* For portability */ (/* Из соображений портируемости */). Это свидетельствует о том, что данный заголовочный файл для Linux или согласно SUSv3 не требуется, но, поскольку некоторым другим (особенно старым) реализациям он может понадобиться, нам приходится включать его в портируемые программы.
Для многих определяемых POSIX.1-1990 функций требуется, чтобы заголовочный файл <sys/types.h> был включен ранее любого другого заголовочного файла, связанного с функцией. Но данное требование стало излишним, поскольку большинство современных реализаций UNIX не требуют от приложений включения этого заголовочного файла. Поэтому из SUSv1 это требование было удалено. И тем не менее при написании портируемых программ будет все же разумнее поставить этот заголовочный файл на первое место. (Но из наших примеров программ этот заголовочный файл исключен, поскольку для Linux он не требуется, и мы можем сократить длину примеров на одну строку.)
Системные вызовы позволяют процессам запрашивать сервисы из ядра. Даже для самых простых системных вызовов по сравнению с вызовом функции из пользовательского пространства характерно существенное потребление ресурсов, поскольку для выполнения системного вызова система должна временно переключиться в режим ядра, а ядро должно проверить аргументы системного вызова и осуществить портирование данных между пользовательской памятью и памятью ядра.
Стандартная библиотека языка C предоставляет множество библиотечных функций, выполняющих широкий диапазон задач. Одним библиотечным функциям для выполнения их работы требуются системные вызовы, другие же выполняют свои задачи исключительно в пользовательском пространстве. В Linux в качестве реализации стандартной библиотеки языка C обычно применяется glibc.
Большинство системных вызовов и библиотечных функций возвращают признак, показывающий, каким был вызов — успешным или неудачным. Надо всегда проверять этот признак.
В данной главе были введены некоторые функции, реализованные нами для использования в примерах книги. Задачи, выполняемые этими функциями, включают диагностику ошибок и анализ аргументов командной строки.
В главе рассмотрены правила и подходы, которыми можно воспользоваться для написания портируемых системных программ, запускаемых на любой соответствующей стандарту системе.
При компиляции приложения можно задавать различные макросы проверки возможностей. Они управляют определениями, которые предоставляются заголовочными файлами. Их использование пригодится для обеспечения гарантий соответствия программы формальному или определяемому реализацией стандарту (или стандартам).