Выбрать главу

NIS domains have a purely administrative function. They are mostly invisible to users, except for the sharing of passwords between all machines in the domain. Therefore, the name given to an NIS domain is relevant only to the administrators. Usually, any name will do, as long as it is different from any other NIS domain name on your local network. For instance, the administrator at the Virtual Brewery may choose to create two NIS domains, one for the Brewery itself, and one for the Winery, which she names brewery and winery respectively. Another quite common scheme is to simply use the DNS domain name for NIS as well.

To set and display the NIS domain name of your host, you can use the domainname command. When invoked without any argument, it prints the current NIS domain name; to set the domain name, you must become the superuser:

# domainname brewery

NIS domains determine which NIS server an application will query. For instance, the login program on a host at the Winery should, of course, query only the Winery's NIS server (or one of them, if there are several) for a user's password information, while an application on a Brewery host should stick with the Brewery's server.

One mystery now remains to be solved: how does a client find out which server to connect to? The simplest approach would use a configuration file that names the host on which to find the server. However, this approach is rather inflexible because it doesn't allow clients to use different servers (from the same domain, of course) depending on their availability. Therefore, NIS implementations rely on a special daemon called ypbind to detect a suitable NIS server in their NIS domain. Before performing any NIS queries, an application first finds out from ypbind which server to use.

ypbind probes for servers by broadcasting to the local IP network; the first to respond is assumed to be the fastest one and is used in all subsequent NIS queries. After a certain interval has elapsed, or if the server becomes unavailable, ypbind probes for active servers again.

Dynamic binding is useful only when your network provides more than one NIS server. Dynamic binding also introduces a security problem. ypbind blindly believes whoever answers, whether it be a humble NIS server or a malicious intruder. Needless to say, this becomes especially troublesome if you manage your password databases over NIS. To guard against this, the Linux ypbind program provides you with the option of probing the local network to find the local NIS server, or configuring the NIS server hostname in a configuration file.

NIS Versus NIS+

NIS and NIS+ share little more than their name and a common goal. NIS+ is structured entirely differently from NIS. Instead of a flat namespace with disjoint NIS domains, NIS+ uses a hierarchical namespace similar to that of DNS. Instead of maps, so-called tables are used that are made up of rows and columns, in which each row represents an object in the NIS+ database and the columns cover properties of the objects that NIS+ knows and cares about. Each table for a given NIS+ domain comprises those of its parent domains. In addition, an entry in a table may contain a link to another table. These features make it possible to structure information in many ways.

NIS+ additionally supports secure and encrypted RPC, which helps greatly to solve the security problems of NIS.

Traditional NIS has an RPC Version number of 2, while NIS+ is Version 3. At the time we're writing, there isn't yet a good working implementation of NIS+ for Linux, so it isn't covered here.

The Client Side of NIS

If you are familiar with writing or porting network applications, you may notice that most of the NIS maps listed previously correspond to library functions in the C library. For instance, to obtain passwd information, you generally use the getpwnam and getpwuid functions, which return the account information associated with the given username or numerical user ID, respectively. Under normal circumstances, these functions perform the requested lookup on the standard file, such as /etc/passwd.

An NIS-aware implementation of these functions, however, modifies this behavior and places an RPC call to the NIS server, which looks up the username or user ID. This happens transparently to the application. The function may treat the NIS data as though it has been appended to the original passwd file so both sets of information are available to the application and used, or as though it has completely replaced it so that the information in the local passwd is ignored and only the NIS data is used.

For traditional NIS implementations, there were certain conventions for which maps were replaced and which were appended to the original information. Some, like the passwd maps, required kludgy modifications of the passwd file which, when done incorrectly, would open up security holes. To avoid these pitfalls, NYS and the GNU libc use a general configuration scheme that determines whether a particular set of client functions uses the original files, NIS, or NIS+, and in which order. This scheme will be described later in this chapter.

Running an NIS Server

After so much theoretical techno-babble, it's time to get our hands dirty with actual configuration work. In this section, we will cover the configuration of an NIS server. If an NIS server is running on your network, you won't have to set up your own; in this case, you may safely skip this section.

Note that if you are just going to experiment with the server, make sure you don't set it up for an NIS domain name that is already in use on your network. This may disrupt the entire network service and make a lot of people very unhappy and very angry.

There are two possible NIS server configurations: master and slave. The slave configuration provides a live backup machine, should your master server fail. We will cover the configuration only for a master server here. The server documentation will explain the differences, should you wish to configure a slave server.

There are currently two NIS servers freely available for Linux: one contained in Tobias Reber's yps package, and the other in Peter Eriksson's ypserv package. It doesn't matter which one you run.

After installing the server program (ypserv) in /usr/sbin, you should create the directory that is going to hold the map files your server is to distribute. When setting up an NIS domain for the brewery domain, the maps would go to /var/yp/brewery. The server determines whether it is serving a particular NIS domain by checking if the map directory is present. If you are disabling service for some NIS domain, make sure to remove the directory as well.

Maps are usually stored in DBM files to speed up lookups. They are created from the master files using a program called makedbm (for Tobias's server) or dbmload (for Peter's server).

Transforming a master file into a form that dbmload can parse usually requires some awk or sed magic, which tends to be a little tedious to type and hard to remember. Therefore, Peter Eriksson's ypserv package contains a Makefile (called ypMakefile) that manages the conversion of the most common master files for you. You should install it as Makefile in your map directory and edit it to reflect the maps you want the NIS server to share. Towards the top of the file, you'll find the all target that lists the services ypserv offers. By default, the line looks something like this: