Выбрать главу

Затею с определением космического треугольника приходится оставить. Только через десять лет тог же Струве, заинтересовавшись задачей, впервые в истории астрономии высчитает параллакс одной из звезд созвездия Лиры.

Лобачевский покидает обсерваторию и снова углубляется в сочинения Лежандра, неоднократно пытавшегося доказать пятый постулат от противного.

Отдельные догадки, многолетние раздумья над парадоксом параллельных линий — все постепенно складывается перед мысленным взором Лобачевского в стройную, небывалую по своей дерзости теорию. Бессонными ночами он работает над «Сжатым изложением начал геометрии со строгим доказательством теоремы о параллельных линиях».

Во что упирались лбами математики на протяжении двадцати веков?

Еще в XIII веке азербайджанский математик Насирэддин Туси утверждал, что постулат о параллельных можно было бы строго доказать, если бы, не прибегая к нему, удалось установить, что сумма внутренних углов треугольника не может быть меньше 180°. Но доказать этого с полной очевидностью никто так и не сумел.

Зная о связи пятого постулата с теоремой о сумме углов треугольника, на подобный путь вначале стал и Лобачевский.

Будучи материалистом до мозга костей, он всегда придавал огромное значение опытной проверке той или иной теории и мало доверял так называемому «здравому смыслу», наглядности. Многие считали, что математика есть чисто формальная наука, что вся область анализа в конце концов сводится к раскрытию более или менее замаскированных тождеств. Лобачевский придерживался другого мнения. Если, к примеру, взять две линейки: одну в метр, другую в метр и два миллиметра. Держать их на разном расстоянии от глаза. Кто сможет с уверенностью сказать, какая из двух линеек короче?..

На практике, во время занятий геодезией, Лобачевскому неоднократно приходилось убеждаться в том, что сумма углов треугольника равна двум прямым. Но значит ли это, что угломерные приборы да и наши органы чувств достаточно точны? Ведь здесь, на Земле, мы имеем дело с небольшими треугольниками. Отклонения от эвклидовой геометрии можно, по-видимому, обнаружить лишь в гигантских, космических треугольниках. Однако и на этом пути, как мы знаем, его ждала неудача. Еще слишком низок был уровень измерительной техники. И все же Лобачевский проникся глубоким убеждением, что теоремы эвклидовой геометрии не наилучшим образом выражают геометрическую структуру всего мирового пространства. Он занялся созданием новой геометрии.

Тысячи раз проделывал он мысленный эксперимент, обращался к чертежам.

Пусть на плоскости даны прямая а и точка р. Проведем через точку р прямую х, которая пересекает нашу прямую а, например, в точке х0. Будем вращать прямую х из ее начального положения в плоскости, положим, против часовой стрелки. Тогда точка пересечения х будет скользить по прямой, уходя все дальше вправо. В конце концов наступает единственный момент, в который прямая х вовсе не пересекает прямую а, то есть в этом случае прямая x становится параллельной нашей прямой а, или эвклидовой параллелью (если прямую х вращать дальше против часовой стрелки, то ее точка пересечения с прямой а появится далеко налево от точки х0).

Аксиома Эвклида утверждает, что существует единственное положение, при котором прямая х вовсе не пересекает прямую. Но так ли это на самом деле? Вот над чем задумался Лобачевский.

Возьмем на чертеже положение, когда вращающаяся прямая х неограниченно приближается к эвклидовой параллели.

Пусть угол β отличается от 90° на ничтожную, исчезающе малую долю градуса — α. Сможем ли мы теперь с уверенностью сказать, что прямая х обязательно пересечет прямую a? Где? За пределами чертежа? Или же в бесконечности, куда не удалось заглянуть никому даже при помощи самых сильных телескопов? В практике нам доступны лишь отрезки прямых, незначительные протяжения. Рассмотреть прямые во всей их бесконечной протяженности никто не может.

Таким образом, мысленный эксперимент не приводит к положительному результату. Аксиома о параллельных не так уж очевидна, как кажется на первый взгляд.

Когда мы рассуждаем о прямой, то прообразом ее считаем обычно луч света. Но как ведут себя лучи света в безграничности вселенной, каковы истинные свойства пространства?..

И Насирэддин Туси, и Ламберт, и Саккери, и Лежандр, и многие другие становились в тупик перед тем фактом, что допущение, будто сумма углов в треугольнике может быть меньше 180°, не ведет к противоречию при доказательстве. Им думалось, что во всем этом кроется логическая ошибка. «Здравый смысл» не хотел мириться с «мнимым», казалось бы, произвольным постулатом: через точку, взятую вне прямой, можно провести по крайней мере две параллельные данной прямой. Они слишком доверяли «здравому смыслу», наглядности. Не хватало смелости, а возможно, именно гениальности преодолеть многовековую инерцию мышления, умения высвободиться от пут трехмерного пространства эвклидовой геометрии.