В действительности интерес Витрувия к музыке ограничивался вопросами конструирования резонаторов для античных театров, а также правильной настройкой струн в катапультах и боевых машинах, которые находились в ведении архитекторов того времени. Правда, Витрувий дал в качестве прекрасных пропорций три "музыкальных" отношения 2:1, 3:2, 5:3. Но наряду с ними он рассматривал и такое отнюдь не музыкальное отношение, как отношение диагонали к стороне квадрата √2:1.
Как бы то ни было, но музыкальная аналогия прочно вошла в сознание архитекторов Возрождения. На первый взгляд, кажется странным, что теоретические воззрения зодчих Возрождения в большей мере определялись не трудами самих архитекторов, а математическими разработками по теории музыки. Но если вдуматься, то это, скорее, следовало из универсального характера математики: хорошо известные в музыке "математические законы красоты" (законы целочисленных консонантных отношений и законы среднепропорциональных) архитекторы Возрождения пытались перенести на свою почву. Не говорит ли эта попытка "пройти" из музыки в архитектуру с помощью математики о безграничной вере мыслителей Возрождения в универсальное могущество математики?!
Огромную роль в развитии музыкальной аналогии в архитектуре сыграл трактат Северина Боэция "О музыке", который вобрал в себя все античные теории музыкальной гармонии и фактически сохранил их для потомков. Автор другого выдающегося трактата по математической теории музыки — итальянский композитор XVI века Джузеппе Царлино — нам также знаком. Как мы знаем (с. 129), среди современников-музыкантов идеи Царлино должного признания не получили. Зато математические выкладки Царлино и его мысль о том, что консонантные (приятные для слуха) интервалы получаются как среднее арифметическое и среднее гармоническое, запали в душу современников-архитекторов и применялись ими для получения "консонантных" (приятных для глаза) пропорций.
Палладио. Вилла Ротонда в Виченце. 1581. Воплощение идеи симметрии, математической строгости и музыкальных пропорций в архитектуре Ренессанса
Леонардо да Винчи. План собора, основанный на правильной восьмиконечной звезде, обладает поворотной симметрией 8-го порядка и отнюдь 'не музыкальной' системой пропорций √2:1
Музыкальная система пропорционирования нашла живой отклик в творчестве выдающегося итальянского архитектора Андреа Палладио (1508 -1580)- автора трактата "Четыре книги об архитектуре". Созданные Палладио типы городского дворца, церкви, виллы благодаря своей завершенности, сочетанию строгой упорядоченности и пластики получили распространение не только в Италии XVI века, но и составили целое направление — палладианство — в европейском зодчестве XVII-XVIII веков. Идея всепроникающей музыкальной гармонии, структурно-математическое понимание красоты, идея симметрии как неотъемлемого качества красоты наиболее полно воплощены Палладио в вилле Ротонда. С высоты птичьего полета в этом каноне архитектуры Ренессанса хорошо видны как поворотная симметрия 4-го порядка всего здания, так и зеркальная симметрия его фасадов, а также ощущается музыка простых целочисленных пропорций.
Вообще, убеждение в том, что архитектура — это наука и что красота здания определяется симметрией и математическими законами гармонии, можно считать главной аксиомой архитектуры Возрождения. Мыслители Возрождения были неоплатониками. Они верили в то, что платонов гептахорд (7.1), который содержит все консонансы, определяет гармонию мироздания, а значит, и единую гармонию всех искусств, а значит, и архитектуры.
И все-таки Палладио был больше архитектором, нежели философом-неоплатоником. Именно поэтому Палладио включил прямоугольник, стороны которого равны стороне и диагонали квадрата, т. е. прямоугольник с иррациональным соотношением сторон √2:1, в список семи форм,
рекомендуемых для планирования комнат. А ведь одного этого прямоугольника достаточно для того, чтобы полностью разрушить музыкальную аналогию в архитектуре.
В самом деле, как мы помним, интервал тритона √2:1 является острейшим диссонансом в музыке и назывался "дьяволом в музыке". С другой стороны, мы знаем, насколько широко парная мера √2:1 применялась в архитектуре. Знали это и архитекторы Возрождения. И не только из сочинений Витрувия. Достаточно вспомнить проект собора, выполненный Леонардо да Винчи и основанный на последовательности восьмиконечных звезд. Разбиение окружности на 8 равных частей порождает угол в 45°, а восьмиконечная звезда — систему равнобедренных прямоугольных треугольников, т. е. треугольников с соотношением √2:1.