В самом деле, полностью изобразить интерьер комнаты, например, в аксонометрии просто невозможно. Для этого нужно считать стены комнаты и ее потолок прозрачными. Можно, конечно, дать ортогональные проекции стен, пола и потолка, но это будет чертеж комнаты. Иное дело — перспектива. Она чудесным образом раскрывает перед нами всю комнату, позволяя увидеть одновременно и ее стены, и пол, и потолок.
На рисунке в способом архитекторов построена перспектива "математической" комнаты в форме куба, имеющей окно, дверь, две балки на потолке и пол, выложенный квадратными плитами. Вынутая стена ABCD комнаты совпадает с плоскостью картины К и передается на ней без искажений (естественно, сохраняются и все размеры на ABCD, такие, как х, у, z и т. д.). Глаз художника расположен напротив центра комнаты, т. е. главная точка картины находится в центре квадрата ABCD. В главной точке картины пересекаются все прямые, перпендикулярные плоскости картины. Для построения перспективы берем план пола комнаты и, проводя из проекции точки зрения S' прямые, параллельные диагоналям пола, находим проекции точек схода F1' и F2' диагоналей. Перенося эти точки на линию горизонта hh, получаем точки схода диагоналей F1 и F2. В этих точках на перспективе пересекаются диагонали пола и параллельные им (на плане) прямые. Дальнейшее построение перспективы пола и стен комнаты, а также горизонтальных границ окна и двери понятно из рисунка.
Разметка вертикальных линий окна точками А2, А3, А4 делается следующим образом. Берем отрезок A1A5, задающий вертикальные линии окна, и его перспективное изображение а1а5. Затем откладываем из точки а1 отрезок A1A5 параллельно линии горизонта и проводим через точки А5 и а5 прямую до пересечения с линией горизонта в точке V. Прямые, проходящие через точку V и точки А1, А2, ... , А5 отрезка A1A5, разделят перспективу этого отрезка а1a5 в том же отношении. Аналогично размечаются вертикальные линии двери. Перспектива нашей "математической" комнаты готова.
Заметим, что проблема правильного построения перспективы "клетчатого" пола долго не давалась художникам Возрождения. Вот почему, решив эту геометрическую задачу, мастера Возрождения так любили изображать квадраты пола на своих полотнах (см. например, "Афинскую школу" и "Обручение Марии" Рафаэля, с. 310). Квадратные плиты были своеобразной координатной сеткой на плоскости пола и придавали глубине картины особую выразительность.
Заканчивая короткое знакомство с геометрическими основами теории перспективы, покажем, как построить перспективу прямоугольного параллелепипеда, расположенного под углом к плоскости картины К. Для простоты будем считать, что переднее ребро параллелепипеда лежит в плоскости картины. Пространственные построения здесь неудобны (см. рисунок в на с. 277), поэтому перспективу параллелепипеда найдем способом архитекторов, используя только основание параллелепипеда — прямоугольник ABCD, лежащий в горизонтальной плоскости Т.
Построение перспективы интерьера комнаты способом архитекторов: (а) — аксонометрия комнаты; (б) — перспектива комнаты; (в) — план пола комнаты и проекция точки зрения
Прямая (а) и обратная (в) перспективы прямоугольного параллелепипеда, расположенного под углом к картинной плоскости (б)
Прежде всего на плоскости картины К проводим линию основания tt и линию горизонта hh, которая выбирается по усмотрению художника (это высота точки зрения художника). Затем, проводя прямые S'F1' и S'F2' параллельные CD и СВ, строим точки схода F1 и F2 этих линий. Делая построения, понятные из рисунков а, б, получаем перспективу abcd основания ABCD. Далее, восставляя из точек а, b, с, d перпендикуляры и откладывая из точки а высоту параллелепипеда (так как переднее ребро параллелепипеда лежит в плоскости картины, то его размеры в перспективе сохраняются), получаем вершину параллелепипеда а'. Наконец, соединяя точку а' с точками схода F1 и F2, а также соединяя образуемые при этом точки b' и d' с соответствующими точками схода, получаем перспективу всего параллелепипеда.
Вообразим теперь, что, проводя линию горизонта hh, мы ошиблись и она оказалась у нас не выше, а ниже основания картины (рис. в на с. 282). В точности повторяя все предыдущие построения, мы получим обратную перспективу а, b, с, d прямоугольника ABCD.