Выбрать главу

Наконец, теорема Дезарга является теоретическим фундаментом перспективных построений, о чем мы еще скажем в конце главы.

И снова вернемся к Понселе. Помимо того что Понселе возродил идею проективной плоскости Дезарга и придал "геометрии положения" самостоятельный статус, он обогатил новую науку и новыми идеями, среди которых, как уже отмечалось, были принципы непрерывности и двойственности.

Принцип непрерывности, позволяющий выводить свойства одной фигуры из свойств другой, Понселе сформулировал так: "Если одна фигура получается из другой непрерывным изменением и столь же обща, как и первая, тогда без дальнейших соображений можно отнести свойства, доказанные для первой фигуры, ко второй". Например, ясно, что противоположные стороны правильного шестиугольника, вписанного в окружность, пересекаются в бесконечно удаленных точках, т. е. лежат на одной бесконечно удаленной прямой. Но это есть доказательство простейшего случая теоремы Паскаля! Тогда согласно принципу непрерывности это утверждение должно быть справедливо и для любого шестиугольника, вписанного в коническое сечение, т. е. мы получаем доказательство общей теоремы Паскаля! Итак, сформулировав и доказав теорему проективной геометрии в простейшем частном случае, Понселе автоматически получал ее обобщение для любой проекции, в которой вид первоначальной конфигурации мог измениться до неузнаваемости.

Несмотря на неточную формулировку, в руках Понселе принцип непрерывности дал новые и верные результаты. Однако на пути применения принципа часто возникали подводные камни. Например, легко видеть, что эллипсы или параболы пересекаются на плоскости в четырех точках, тогда как окружности — только в двух. Между тем как конические сечения эти линии должны обладать одинаковыми свойствами. Вводя на плоскости систему координат и следуя принципу непрерывности, Понселе пришел к выводу, что все окружности помимо двух действительных точек пересечения имеют на плоскости еще две точки пересечения, которые являются не только бесконечно удаленными, но и мнимыми (точнее, комплексно-сопряженными). Так в геометрии появились комплексные числа.

Но если принцип непрерывности достаточно сложен и требует поистине математического полета фантазии, то принцип двойственности прост и прозрачен. Рассмотрим, как действует принцип двойственности в планиметрии.

Вспомним основные аксиомы проективной геометрии на плоскости, формулировка которых стала возможной с введением понятия бесконечно удаленных точек (см. с. 285). Принцип двойственности основан на том простом факте, что эти две аксиомы обнаруживают двойственность, т. е. переходят друг в друга, если поменять местами слова точки и прямые (соответственно из соображений литературности языка следует поменять глаголы лежат и проходят, а также предлоги на и через). Если же, говоря о точке, лежащей На прямой, или о прямой, проходящей через точку, ввести более общий термин прямая и точка инцидентны, то последние языковые различия устраняются и аксиомы проективной планиметрии примут наиболее универсальный вид:

А.1. Две различные точки на проективной плоскости определяют прямую, и притом только одну, которой они обе инцидентны.

А.2. Две различные прямые на проективной плоскости определяют точку, и притом только одну, которой они обе инцидентны.

Теперь эти две аксиомы отличаются друг от друга только выделенными словами, т. е. словами точки и прямые, а мы получаем возможность сформулировать сам принцип двойственности: все утверждения проективной планиметрии образуют пары, в которых одно из утверждений пары можно непосредственно получить из другого, взаимозаменив слова точка и прямая.

Понселе не только открыл принцип двойственности, но и применял его до пределов возможного. С легкой руки Понселе стало принято записывать теоремы проективной геометрии в два столбца: в одном столбце пишут доказанную теорему, а в другом — двойственную ей. Разумеется, доказательство двойственной теоремы становится излишним. Таким образом, с открытием Понселе стало возможным удвоить число теорем проективной геометрии, не затратив при этом никакого труда.

В качестве примера двойственных теорем приведем следующую пару. В левом столбце записана известная нам теорема Паскаля, которая сформулирована в удобном для "двойственного перевода" виде. Дополнив наш "словарь двойственных терминов" еще одной парой: точка пересечения двух прямых и прямая, проходящая через две точки,- мы легко получаем в правом столбце теорему, двойственную теореме Паскаля. (В обеих теоремах взаимозаменяемые термины выделены, а выражения, проясняющие смысл, взяты в скобки.)