Выбрать главу

Так что же такое математика и в чем ее особая красота? "Математика — это больше, чем наука, это язык" — так определил место математики в системе наук знаменитый датский физик Нильс Бор (1885-1962). Математика может быть языком любой науки, умеющей на нем разговаривать. В этом универсальность и могущество математики, но в этом и особая красота математики, выделяющая ее среди других наук. Ибо всякий язык красив уже сам по себе как средство общения.

В самом деле, как только любая из наук переведет свои проблемы на язык математики, так тут же к ее услугам откроется весь богатейший арсенал математики, обладающий массой универсальных методов и способный решать многие конкретные задачи. Например, сформулировав задачу на языке дифференциальных уравнений, представитель любой науки получит в руки полный набор математических методов от качественных методов исследования дифференциальных уравнений до современных численных методов решения этих уравнений на ЭВМ.

Математика: прекрасное в науке

Но математика — это особое средство общения: она помогает найти общий язык служителям разных наук и, что еще важнее, она помогает ученому "разговаривать" с природой. Так, волны на воде, звуковые волны и радиоволны описываются на языке математики одним и тем же дифференциальным уравнением, известным под названием волнового уравнения (см. (10.1)). Радиофизикам уже нет нужды решать волновое уравнение, которое за них решили акустики. Более того, с помощью математики здесь выявляется родство в столь разнородных на первый взгляд физических явлениях, как распространение радиоволн и волн на воде и в воздухе.

Таким образом, в математике как ни в какой другой науке находит выражение важнейший критерий научной красоты — единство в многообразии. Математика раскрывает перед человеком красоту внутренних связей, существующих в природе, и указывает на внутреннее единство мира. То, что именно в математике достигается в наивысшей форме единство в многообразии, а следовательно, и наибольшая красота в науке, отмечал в статье "Смысл и значение красоты в точных науках" В. Гейзенберг: "Понимание всего богато окрашенного многообразия явлений достигается путем осознания присущего всем явлениям объединяющего принципа форм, выражаемого на языке математики. Таким же образом устанавливается тесная взаимосвязь между тем, что воспринимается как прекрасное, и тем, что доступно пониманию лишь с помощью интеллекта ".

Язык математики — это особый язык науки. В отличие от естественного языка (русского или английского), который в основном классифицирует предметы и потому является языком качественным, язык математики прежде всего количественный. Количественный язык представляет собой дальнейшее развитие и уточнение обычного качественного языка, но он не исключает а скорее дополняет последний.

Дюрер. Меланхолия. Гравюра на меди. 1514. Во времена Возрождения меланхолический темперамент отождествляли с творческим началом. На гравюре Дюрера Меланхолия окружена атрибутами зодчества и геометрии, отчего математики любят считать этот шедевр графического искусства олицетворением творческого духа математика, а саму Меланхолию — представительницей математики в мире прекрасного

Важнейшим преимуществом количественного языка математики является краткость и точность. В этом его огромное преимущество и в этом его красота, ибо именно в математическом языке претворяется один из основных признаков красоты в науке: сведение сложности к простоте. Всем известно, что с помощью математического языка — функций, уравнений, формул — точно и кратко описываются самые разнообразные свойства и явления, происходящие в природе и обществе. Древнегреческому математику Апполонию из Перги (ок. 260 — ок. 170 гг. до н. э.) потребовалось восемь книг, чтобы описать свойства конических сечений. Между тем на языке аналитической геометрии, т. е. с помощью алгебраических формул, эти свойства доказываются на нескольких страницах. Эталоном простоты и красоты, символом современной физики стала знаменитая формула Эйнштейна