Так что же такое есть индивидуальная окраска тональностей: традиция, идущая от пифагорова строя, или неизвестная объективная закономерность? Окончательного ответа на этот вопрос пока не существует.
Вот так, вместо обещанной точки в конце параграфа мы вновь пришли к вопросительному знаку. Но ведь это и хорошо, ибо новые вопросы зовут нас в новые пути в неизвестное! А впереди у нас, пожалуй, главный вопрос всей второй части: в чем секрет "закона Пифагора"? Почему приятные для "уха" консонансные интервалы математически выражаются такими приятными для "разума" простыми целочисленными соотношениями 2/1, 3/2, 4/3, 5/4, 6/5?
10. Математика колебания струны: тайное становится явным
Музыка есть таинственная арифметика души; она вычисляет, сама того не сознавая.
Ноябрьским утром 1717 г. на ступенях парижской церкви святого Жана ле Рона был найден младенец. Его взяли на воспитание и в честь святого церкви окрестили Жаном ле Роном. Мальчик рано проявил блестящий ум и жадную любознательность и вскоре стал гордостью всей Франции. Это был Жан ле Рон Д'Аламбер (1717-1783) — выдающийся французский математик, философ, писатель, член Парижской, Петербургской и других академий.
Круг интересов Д'Аламбера был необычайно широк: механика (принцип Д'Аламбера), гидродинамика (парадокс Д'Аламбера), математика (признак сходи мости Д'Аламбера), математическая физика (формула Д'Аламбера), философия теория музыки. Такой широты требовала и oабота вместе с Дени Дидро над созданием наменитой "Энциклопедии наук, искусств и ремесел", да и сам дух эпохи посвещения, когда к знаниям тянулись все, в том числе и "просвещенные деспоты" Фридрих II и Екатерина II. Последуя неоднократно приглашала Д'Аламбера быть воспитателем ее сына — цесаревича Павла, назначая при этом баснословное вознаграждение, но всегда получала деликатный, но твердый отказ.
Колебания струны длины l. Показаны два момента времени t1<t2. Масштаб по ординате U(х,t) сильно увеличен
В 1747 г. Д'Аламбер опубликовал статью "Исследования по вопросам о кривой, которую образует натянутая струнa, приведенная в колебание", где впервые задача о колебании струны сводилась к решению дифференциального уравнения в частных производных. И хотя эта тема выходит за рамки школьной математики но ведь в знаниях "держать себя в рамках" — значит погубить свою любознательность!), мы рассмотрим простое и поистине красивое уравнение, описывающее колебание струны, так называемое полновое уравнение, с которого началась новая ветвь математики — математическая физика:
(10.1)
Здесь t — время; х — координата струны в положении равновесия; u = u(х, t) — неизвестная функция, выражающая отклонение точки с координатой х в момент времени t от положения равновесия; а2 — коэффициент пропорциональности, характеризующий упругие свойства струны , T — сила натяжения струны, р — плотность однородной струны). Предполагается, что струна совершает малые колебания, происходящие в одной плоскости. Наконец, символы
обозначают частную производную второго порядка, которая определяется как производная от производной
. Частные производные —
, как и обычная "школьная" производная
характеризует скорость изменения функции u(х,t) по каждой из переменных х или t в отдельности при условии, что другая переменная не изменяется (у функций одной переменной y = y(x) — одна производная, а у функции двух переменных u = u(х,t) — две частные производные
. Чтобы отличать частные производные от обыкновенных "школьных", пишут не прямую букву
, а круглую
.
Волновое уравнение (10.1) есть не что иное, как следствие второго закона Ньютона. Левая часть (10.1) выражает вертикальное ускорение струны в точке х, а правая часть — отнесенную к массе струны силу, вызывающую это ускорение, которая тем больше, чем больше вогнутость струны .
Д'Аламбер нашел общее решение уравнения (10.1)
(10.2)
которое содержит две произвольные функции φ(х,t) и ψ(х,t). Через пять лет Даниил Бернулли (1700-1782), математик, механик, физиолог и медик, почетный член Петербургской Академии наук, представитель славного рода Бернулли, который к настоящему времени подарил миру более 100 потомков, добившихся значительных результатов во всех сферах человеческой деятельности, и прежде всего в научной, получил другое общее решение уравнения (10.1)