вида (n = 1, 2, 3, 4, 5), определены самой природой колебания струны! Все консонансы заключены в первых шести гармониках, т. е. первых шести тонах натурального звукоряда, причем по мере удаления от первой гармоники (основного тона) степень консонантности интервала убывает. Итак, закон целочисленных отношений для консонантных интервалов
, который, по преданию, был экспериментально открыт Пифагором на монохорде, является следствием математического решения задачи о колебании струны и непосредственно вытекает из решения (10.9).
Переходя к более высоким гармоникам, нетрудно обнаружить также два интервала тона чистого строя: ω9/ω8 = 9/8, ω10/ω9 = 10/9 и интервал полутона чистого строя: ω16/ω15 = 16/15. Таким образом, все интервалы чистого строя содержатся в натуральном звукоряде! Вот почему чистый строй более приятен в гармоническом звучании, чем пифагоров строй.
Но и сами тона чистого строя (8.7) почти полностью определены натуральным звукорядом. В самом деле, если рассмотреть октаву между 8-й и 16-й гармониками, принимая частоту 8-й гармоники за единицу (т. е. поделив все частоты на 8), то мы обнаружим в этой октаве все ступени чистого строя, кроме 4-й (4/3) и 6-й (5/3). Следовательно, чистый строй почти целиком содержится в натуральном звукоряде.
Однако это коварное "почти" до сих пор составляет одну из загадок музыки. В самом деле, почему именно 7, 11 и 13-й обертоны (14-й обертон является октавным повторением 7-го) не входят ни в один из музыкальных строев? Знаменитый "фальшивый" 7-й обертон третье столетие не дает покоя теоретикам музыки! С одной стороны, ясно, что неправильно называть этот звук фальшивым, ибо он дан самой природой, которую трудно упрекнуть в фальши. Но с другой стороны, все теоретики музыки, начиная с Рамо, были слишком большими музыкантами, чтобы включить седьмую гармонику в какую-либо музыкальную систему (седьмой звук явно "резал ухо"!). Впрочем, еще в XVIII веке французский музыкальный теоретик Балльер с присущей французу легкостью писал: "Разница между древностью и современностью заключается в том, что тогда начинали считать диссонансы с 5-го призвука, а теперь начинают их считать лишь с 7-го". Не пойдет ли развитие музыки так, что в новых музыкальных системах найдется место и 7, и 11, и 13-му обертонам?.. А пока молоточки фортепиано, следуя первому закону Юнга, ударяют на 1/8 длины струны, чтобы максимально снизить силу злополучного 7-го обертона.
Наконец, отметим еще одну важную особенность натурального звукоряда. Глядя на рисунок, мы видим, что 4, 5 и 6-я гармоники образуют мажорное звучание (до-ми-соль). А если к ним добавить еще и 1-ю, и 2-ю гармоники, то получится мажорное трезвучие в сопровождении октавного баса! Итак, мажорное трезвучие составлено из ближайших гармоник (4, 5 и 6-й) основного тона (баса мажорного трезвучия). Следовательно, оно не только консонирует, но и обладает акустическим единством, заложенным в самой природе колебания струны. Это дало основание одному из последних универсальных ученых — немецкому математику, физику, физиологу и психологу Герману Гельмгольцу (1821 — 1894) утверждать, что "мажорный аккорд наиболее натурален из всех аккордов".
Ну а минорное трезвучие? Споры о природе минора не затихают и по сей день. В них участвовали Рамо, Д'Аламбер, Руссо, Гёте, Гельмгольц, многие наши современники. На сегодня мнения сходятся в том, что поскольку в минорном трезвучии (до — ми-бемоль — соль) второй звук (ми-бемоль) лежит на полутон ниже пятой гармоники основного тона, то он образует с ней едва слышимый диссонанс, который и обусловливает некоторую "затененность", "нечто мрачное и неясное, необъяснимое для слушателя" (Гельмгольц). По o этой причине в музыке Баха, Генделя, Моцарта минорные произведения часто заканчиваются мажорным — наиболее натуральным, просветленным — аккордом.
Итак, в мажорной гамме третья ступень как бы тяготеет вверх, тогда как в минорной она тяготеет вниз. Движение же вверх воспринимается нами как восхождение к свету, просветление, радость. Напротив, движение вниз ассоциируется со спуском в темноту, затемнением, печалью. Эти объективные предпосылки поддерживаются, кроме того, определенной традицией применения мажора и минора. В тех же случаях, когда эти традиции нарушаются, мы встречаем разудалую песню "Яблочко", написанную в миноре, и молитву "Ave Maria", которую, несмотря на ее название — "Радуйся, Мария" — и мажорный лад, никак не назовешь веселой. К сожалению, смешивание объективных физико-математических законов строения мажора и минора с их субъективной эстетической оценкой породило вокруг них много ненужных споров.