Выбрать главу

Мы уже отмечали некоторые пропорции музыкальной гаммы. Мы также знаем, что пропорциональность и симметрия являются объективными признаками красоты. Однако чем ближе всматриваешься в музыкальную гамму, тем полнее раскрываются все новые закономерности ее пропорционального строения, а значит, и объективные законы ее красоты. Остановимся подробнее на некоторых из этих закономерностей.

Рассмотрим вначале равномерно-темперированную 12-ступенную хроматическую гамму (9.1), имеющую наиболее простое строение:

(11.1)

Легко видеть, что ступени равномерно-темперированной гаммы (11.1) образуют геометрическую прогрессию со знаменателем . Тогда

или (11.2)

Следовательно, каждая внутренняя ступень гаммы (11.1) является средним геометрическим своих соседей. Назовем это локальной геометрической симметрией с коэффициентом симметрии (отношением входящих в пропорцию членов) .

Кроме того, гамма (11.1) обладает глобальной геометрической симметрией, т. е. произведения членов (11.1), равноудаленных от концов, равны квадрату среднего члена b6:

или откуда имеем

(11.3)

Таким образом, седьмая ступень (11.1) b6=, так называемый тритон, равный увеличенной кварте или уменьшенной квинте, является средним геометрическим любой пары равноудаленных от концов ступеней. Назовем тритон b6=, центром глобальной геометрической симметрии гаммы (11.1). Глобальная геометрическая симметрия связывает интервал и его обращение через интервальный коэффициент октавы.

Если прологарифмировать (11.1) — (11.3) по основанию 2, то эти соотношения примут наиболее простой вид

(11.4)

(11.5)

(11.6)

Здесь ak = log2bk (k = 0, l, 2, ..., 12). Равенства (11.4) — (11.6) выражают тот простой факт, что логарифмическая октава [0; 1] разбита на 12 равных частей. Поэтому каждые три соседних члена (11.4) симметричны относительно среднего из них и отстоят от него на расстояние 1/12 (локальная симметрия), а середина логарифмической октавы а6=1/2 является центром ее глобальной симметрии, т. е. для каждого аn слева от а6 существует симметричный относительно а6 член a12-n справа от а6, так что расстояния a12-n — а6 и а6 — аn равны (n = 0, 1, 2, ..., 5).

Из равенств (11.1-3) или (11.4-6) очевидно, что при любых сдвигах (геометрических для (11.1) или арифметических для (11.4) структура равномерно-темперированной гаммы не нарушается, т. е. равномерно-темперированная гамма допускает модуляции в любые тональности. Эти возможности равномерной темперации, как отмечалось в главе 9, блестяще проиллюстрировал И. С. Бах в своем "Хорошо темперированном клавире".

Рассмотрим теперь лидийскую гамму пифагорова строя, или натуральный мажор (8.1), взяв в качестве дополнительных ступеней пониженные звуки (ре-бемоль, ми-бемоль, соль-бемоль, ля-бемоль, си-бемоль) и один повышенный звук (фа-диез) согласно (8.2):

(11.7)

Структура пифагоровой гаммы (11.7) значительно сложнее. Однако при ближайшем рассмотрении можно обнаружить, что пифагорова гамма состоит из трех геометрических прогрессий, переплетенных между собой, подобно Платонову гептахорду (7.1), причем все три прогрессии имеют одинаковый знаменатель :

Для этих прогрессий справедливы соотношения

Учитывая расположение членов прогрессии в (11.7), приходим к выводу, что пифагорова гамма, также обладает глобальной геометрической симметрией. Следовательно, является центром глобальной симметрии пифагоровой гаммы.

Но не является ступенью гаммы (11.7). Кроме того, в (11.7) осталась одна пара энгармонически неравных звуков соль-бемоль и фа-диез. Если в качестве энгармонически равного звука для соль-бемоль