Выбрать главу

Таким образом, в строении гаммы наряду с точной симметрией мы находим и приблизительную симметрию. (О загадках приблизительной симметрии и ее роли в науке и искусстве мы уже вели речь в главе 4.) Следовательно, в законах построения музыкальной гаммы отражается противоборство симметрии и асимметрии, олицетворяющих покой и движение, закономерное и случайное, вечное и сиюминутное. Именно диалектическое единство двух противоположных начал — симметрии и асимметрии — наполняет гамму подлинной гармонией, является источником вечной красоты и юного изящества музыкальной гаммы.

Последние три десятилетия поисками математических закономерностей в музыке усиленно занимается московский композитор М. А. Марутаев. Еще в студенческие годы М. Марутаева занимала мысль найти объяснение принципам музыкальной формы и ладогармонического языка. Результаты многолетних изысканий М. Марутаева легли в основу развитой им теории качественной симметрии чисел, позволившей автору определить меру нарушения симметрии в музыкальной гамме.

На основании теории качественной симметрии чисел Марутаев строит концепцию "универсальной гармонии", т. е., проще говоря, пытается решить одну из вечных загадок: найти "формулу красоты", "универсальную гармонию", которую искали еще древние греки и которая связала бы воедино законы природы и законы искусства.

К сожалению, и на сегодня это фантастическая задача, ибо человечеству пока не известны ни единые законы природы, ни тем более законы искусства.

Вот почему у концепции Марутаева много как пылких сторонников, так и ярых противников. Мы не будем останавливаться на концепции Марутаева, которая во многом спорна, а местами и просто содержит математические огрехи (но у кого хватит смелости объявить себя специалистом и в науке, и в искусстве?!), а отметим лишь некоторые любопытные факты, установленные Марутаевым.

Вновь обратимся к гаммам. Прежде всего заметим, что, хотя мы все время говорили о 12-ступенных хроматических гаммах, мы везде фактически включали в рассмотрение 13-ю ступень (октавное повторение основного тона), которая на самом деле является 1-й ступенью следующей октавы. Если в гаммах (11.1), (11.8) и (11.11) октавное повторение основного тона не рассматривать, то получается действительно 12-ступенные музыкальные ряды, которые Марутаев называет качественными музыкальными рядами, поскольку они состоят из оригинальных качеств:

1,37

(1.12)

(1.13)

(1.14)

Легко видеть, что качественная равномерно-темперированная гамма (11.12) сохраняет свойство глобальной геометрической симметрии, центр которой сместился из точки ≈1,41 в точку 211/24≈1,37:

А вот для качественных гамм пифагорова и чистого строя глобальная геометрическая симметрия нарушится и будет выполняться только приблизительно. В самом деле, вычисляя среднее геометрическое для равноудаленных от концов членов ряда (11.13)

и ряда (11.14)

мы видим, что эти числа слегка различаются, однако их среднее арифметическое с точностью до 5 знаков совпадает между собой и с точностью до 4 знаков — 211/24

Итак, число 1,37 является центром глобальной геометрической симметрии (точной для (11.12) и приблизительной для (11.13) и (11.14)) 12-ступенных музыкальных гамм. Далее, Марутаев напоминает, что в ботанике известен идеальный угол расхождения листьев, равный 137°30'. Это математически рассчитанный угол, на который должны поворачиваться листья при их винтовом расположении вдоль стебля, так чтобы получать наибольшее количество вертикально падающего света. Удивительным оказывается и тот факт, что идеальный угол получается при двух последовательных делениях по золотому сечению угла 360°.

Особую роль играет число 137 и в физике, где оно является безразмерной комбинацией фундаментальных постоянных природы. Вот что по поводу этого числа пишет один из крупнейших современных физиков, лауреат Нобелевской премии англичанин Поль Дирак, возглавлявший в 60-е гг. XX века в Кембридже знаменитую лукасовскую кафедру — ту самую, которую в 60-е гг. XVII века профессор Исаак Барроу уступил своему 26-летнему ученику Исааку Ньютону: "В природе существует несколько фундаментальных констант: заряд электрона (е), постоянная Планка, деленная на 2π(