Полигоны относительных частот высоты звуков в партии первой скрипки. Уже по внешнему виду статистических распределений можно заключить, что композиторы-додекафонисты Берг и Веберн применяли совершенно иные правила композиции, чем Бетховен и Рихард Штраус
На рисунке построены полигоны относительных частот высоты звуков в партии первой скрипки для четырех музыкальных произведений: струнного квартета ми-бемоль мажор Бетховена (1809) (партия первой скрипки); симфонической поэмы Рихарда Штрауса "Тиль Уленшпигель" (1890) (партия первой скрипки); первой части скрипичного концерта Берга (1935) и струнного трио Веберна (1927) (партия скрипки). Одного взгляда на рисунок достаточно для того, чтобы понять: первые два произведения — Бетховена и Р. Штрауса, при всем их различии, принадлежат к одному типу музыки, а два последних — Берга и Веберна — к совершенно другому типу (хотя они также отличаются, между собой). Знатоки музыки воспримут этот факт как должное: ведь по отношению к Бетховену и Р. Штраусу Берг и Веберн — представители принципиально иного направления в музыке, так называемой додекафонной* или атональной музыки. Поскольку атональная музыка отрицает главную роль тоники и устойчивых звуков в ладу и считает все звуки равноправными, то и статистическое распределение высот звуков в атональной музыке должно быть более гладким по сравнению с тональной музыкой, где одни звуки являются явно предпочтительными (пики на полигоне относительных частот), а другие употребляются редко ("провалы" на полигоне).
* (Додекафония (от греч. dodeka — двенадцать и phone — звук) — метод музыкальной композиции, основанный на отрицании ладовых связей между звуками. В додекафонии все 12 звуков хроматической гаммы считаются абсолютно равными (откуда и происходит название) без различия устойчивых и неустойчивых звуков и без выделения тоники. Поэтому додекафонию называют также атональной музыкой. Метод додекафонии был разработан и внедрен австрийским композитором Арнольдом Шёнбергом (1874-1951). Альбан Берг (1885-1935) и Антон фон Веберн (1883- 1945) — ученики и последователи Шёнберга.)
Итак, тот факт, что Берг и Веберн — представители одного направления в музыке, а Бетховен и Р. Штраус — другого, нашел яркое выражение в статистических распределениях высот звуков у этих композиторов. Заметим, что Берг и Веберн, будучи пылкими последователями Шёнберга, сочиняли свою музыку по сходным и весьма строгим формальным правилам. Поэтому их статистические распределения так похожи, хотяу с другой стороны, и различаются тонкими деталями, которые характеризуют индивидуальные черты каждого композитора. Таким образом, уже простая статистика высот звуков позволяет выявить, с одной стороны, принадлежность автора к тому или иному направлению в музыке, а с другой — увидеть тонкие черты различия, характерные для конкретных произведений и конкретных композиторов. Однако пока мы ограничивались лишь качественными выводами. Посмотрим, нельзя ли извлечь из статистических распределений какие-либо количественные характеристики.
Всякое статистическое распределение (xi, Wi) i = l, 2, ..., k обладает двумя важнейшими числовыми характеристиками: эмпирической средней и эмпирической дисперсией. Эмпирической средней называется среднее арифметическое значений хi, статистического распределения с учетом их частот п" т. е.
(12.5)
Эмпирическая средняя характеризует "среднюю величину" значений статистического распределения. Однако помимо "средней величины" важно знать, насколько "разбросаны" значения ж, относительно этой средней величины, т. е. какова дисперсия (от лат. dispersus — рассыпанный) статистического рарпределения. Назовем разность xi — отклонением значения xi от эмпирической средней
. Легко видеть, что сумма всех отклонений с учетом их частот ni, равна нулю:
и, значит, не может быть взята в качестве характеристики рассеяния параметров статистического распределения. Поэтому в качестве характеристики разброса параметров xi берут среднее арифметическое квадратов отклонений. Итак, эмпирической дисперсией D называется среднее арифметическое квадратов отклонений значений хi, от их эмпирической средней