"Естественно,- отмечал Фукс,- музыковед в связи с нашими распределениями частот может поставить много критически окрашенных вопросов. Так, степень важности партии первой скрипки может быть очень различной в разных частях сочинения: в одной части она может решающим образом определять мелодию, ритм и гармонию, а в других местах сочинения играть роль, в музыкальном отношении подчиненную. Вопросы подобного рода, а также и другие важные обстоятельства должны, естественно, учитываться в тех ветвях музыковедения, которые связаны с количест венными исследованиями". Все это, разумеется, так, и у математического музыковедения непочатый край проблем. Не нельзя не видеть подкупающей простоты и универсальности найденных (пусть простейших) математических закономерностей. Зная эти закономерности, можно, например, подсчитать значение σ для произведения какого-то неизвестного нам автора и, пользуясь данными таблицы 4, отнести это произведение к тому или иному музыкальному направлению. Это будет уже некая "музыкальная криминалистика", построенная на базе математики. В подобной всеобщности и заключается могущество математического метода.
Матрицы переходов в парти первой скрипки (площадь ее ответствующего кружка прс порциональна частоте переход от одного звука к другому). Легко видеть, насколько закономерен характер переходов музыке Баха и Бетховена и насколько он близок к случайному в музыке Веберна
Сделаем еще один, последний, шаг в нашем кратком знакомстве с математическим анализом музыки. Очевидно, что статистические распределения высоты звуков показывают лишь, сколько раз данный звук встречается в музыкальном произведении. Но ведь главным элементом музыки является мелодия — художественно осмысленная последовательность звуков в произведении. Информация же о последовательном расположении звуков в статистическом распределении высот теряется. Получить такую информацию нетрудно с помощью так называемых матриц перехода. Матрица перехода представляет из себя квадратную таблицу, по горизонтальной и вертикальной осям которой отложены все звуки из диапазона звучания музыкального произведения. На пересечении строк и столбцов матрицы перехода ставится частота, с которой в данном произведении совершается переход от одного звука к другому.
На рисунке показаны матрицы переходов, составленные Фуксом, для знакомых нам произведений (взяты партии первой скрипки): концерта для двух скрипок ре-минор Баха, струнного квартета ми-бемоль мажор Бетховена и струнного трио Веберна. Четвертая матрица представляет частоты перехода для случайной последовательности звуков, которая была образована из того же звукового материала, что и сочинение Веберна. Для наглядности частота переходов характеризуется не цифрами, а площадью кружка (чем больше частота перехода, тем больше площадь соответствующего кружка). Простое сопоставление приведенных матриц убеждает в том, насколько строгими и закономерными являются переходы у Баха и Бетховена и насколько они близки к случайным у Веберна. Эти закономерности также можно описать численно с помощью так называемых коэффициентов корреляции, которые служат своеобразной "мерой беспорядка". Для последовательности случайных чисел, т. е. при полном беспорядке, коэффициент корреляции практически равен нулю. Наоборот, при сильной зависимости между элементами коэффициент корреляции близок к единице. В приведенных примерах коэффициент корреляции k для "случайной музыки" равен 0,03 (для трио Веберна й = 0,06), т. е. музыка Веберна близка к "случайной музыке". Напротив, в концерте для двух скрипок Баха k = 0,61, а в струнном квартете Бетховена k = 0,76, т. е. музыка Бетховена является наиболее "закономерной".
Свой анализ матриц перехода Фукс заканчивает следующим замечанием: "Для читателей, интересующихся музыкой, стоит заметить, что из всех возможных переходов используется только небольшая их часть: у Баха 23%, у Бетховена 16% и у Веберна 24% всех возможных связей в рассматриваемом диапазоне звуков. Однако уже из этих простых фактов, к которым можно было бы добавить и другие, вытекает следующее заключение. Возможности музыки, использующей классические инструменты — сочиненной по правилам контрапункта, додекафонной музыки или по каким-нибудь другим правилам,- еще никоим образом не исчерпаны".
Продолжая мысль Фукса, мы можем в заключение сказать, что возможности математических методов анализа музыки и произведений искусства вообще не только не исчерпаны, но представляют собой почти нетронутую целину для исследователя. Экспериментальная эстетика ждет еще своего Ньютона.