Модуль в архитектуре (от лат. modulus — мера) — это единица измерения, принимаемая для согласования размеров частей сооружения между собой и со всем сооружением. В качестве модуля в зависимости от особенностей конструкции и композиции здания принимались различные величины, например диаметр колонны в античной архитектуре или диаметр купола в византийском зодчестве. Еще чаще использовали так называемый линейный модуль, когда архитектурной мерой являлась непосредственно мера длины. В истории всех народов меры длины (вплоть до 10 декабря 1799 г., когда впервые была введена искусственная мера длины — метр) всегда естественным образом связывались с человеком: шаг, сажень, стопа, пядь, фут, дюйм, ярд... (Последний, например, был введен в 1101 г. указом английского короля Генриха I и равнялся расстоянию от кончика носа его величества до конца среднего пальца его вытянутой руки.) Так вот, "точную соразмерность" теоретики Возрождения поняли арифметически: модуль должен целое число раз ("точно"!) откладываться в каждой из частей архитектурного сооружения. Таким образом, в теории архитектуры допускались только рациональные пропорции, отношения целых чисел, а об иррациональных пропорциях не могло быть и речи. Это убеждение подкреплялось и тем, что в музыке, как мы знаем, со времен Пифагора также господствовали целочисленные отношения интервалов.
Но сами шедевры древней архитектуры безмолвно взывали к обратному: античные пропорции основаны на иррациональных отношениях! В самом деле, ведь "точную соразмерность" частей и целого можно достигнуть и другим путем — геометрическим. Например, построив квадрат со стороной АВ и измерив шнуром его диагональ АС, нетрудно было получить иррациональную пропорцию АВ/АС = 1/, даже не зная иррациональных чисел. Далее, отложив с помощью шнура на продолжении стороны АВ диагональ AC = AD, легко было построить прямоугольник с иррациональным отношением сторон DE/AD = 1/
. Повторив эту операцию несколько раз, можно получить систему прямоугольников с иррациональными отношениями сторон. Ясно, что прямоугольник AHKN на рисунке (б) состоит из двух квадратов. Таким образом, мы получаем еще один практически удобный способ получения иррациональных отношений — систему двух квадратов. Два квадрата, приставленных один к другому, дают иррациональные отношения ВС/АС = 1/√5, АВ/АС = 2/√5, а с помощью двух операций циркулем или шнурком, как показано на рисунке (в), в них можно получить и золотое сечение ЕВ/АЕ = АЕ/АВ = (√5 — 1)/2 = φ, АВ/АЕ = АЕ/ЕВ=1/φ = (√5 + 1)/2 = Φ (см. (12.1)-(12.3)).
Помимо гипотез, построенных на изучении геометрических свойств античных памятников, были и "материальные" свидетельства того, что древние пользовались иррациональными пропорциями. История сохранила имена древнейших математиков и зодчих — Имхотепа и Хесиры, живших в XXVIII веке до н. э., — строителей первой в истории Древнего Египта пирамиды фараона Джосера в Саккаре. Это были высокочтимые люди, о чем свидетельствуют древнеегипетские иероглифы: "Визирь фараона Нижнего Египта, первый после фараона Верхнего Египта, управитель великой палаты, почетный гражданин, великий жрец Гелиополиса, Имхотеп, строитель и скульптор"; "Хесира, начальник Дестиутса и начальник Бута, начальник врачей, писец фараона, приближенный фараона, жрец Гора, главный архитектор фараона, Верховный начальник десятки Юга и резчик". Хесира был похоронен вблизи пирамиды Джосера. Стены его гробницы украшали рельефы на досках. Поистине потрясающе, что древние доски, которым почти 5000 лет, прекрасно сохранились и выставлены сегодня в Египетском музее в Каире. На двух панелях изображены фигуры владельца гробницы, которые считаются лучшими образцами рельефного портрета в древнеегипетском искусстве. Но для нас эти рельефы интересны прежде всего потому, что в руках у Хесиры, помимо прибора для письма, изображены две палки — два эталона меры. Если теперь взять линейку, измерить Длины этих палок и найти их отношение, то мы обнаружим, что они относятся как 1/√5 = 0,447!
Примеры геометрического построения иррациональных отношений. Диагональ квадрата (а). Система прямоугольников с иррациональными отношениями сторон (б). Золотое сечение в системе 'двойной квадрат' (в). Помпейскйй пропорциональный циркуль, установленный на золотое сечение (г)
Зодчий Хесира. Фрагмент деревянной панели из гробницы Хесиры в Саккаре. XXVIII в. до н. э. Рельеф Хесиры — не только лучший образец древнеегипетского рельефного портрета, не только древнейшее в мире художественное произведение на дереве, но и научное свидетельство о древнеегипетской системе архитектурного пропорционирования