Выбрать главу

Посмотрим теперь, как работает нейрон. Различные его части несут разные функции. Аксон представляет собой именно то, чем он кажется, — это путь проведения нервного импульса, возникшего в теле клетки, в какое-нибудь другое место, обычно к другому нейрону. Аксон — природный аналог соединительного проводника электрической цепи. Дойдя до места своего назначения, он делится на более тонкие веточки, вступающие в контакт с входными участками, или «клеммами», других нейронов. Входными участками нейрона служат его дендриты и тело. Микроскопическое исследование показывает, что ветви аксона одной нервной клетки, как правило, оканчиваются именно на этих частях других нейронов, а не на их аксонах. Каждое соединение аксона одного нейрона с дендритом или телом другого называется синапсом. Позже мы увидим, что свойства синапсов служат основой некоторых важнейших проявлений деятельности нервной системы.

То, что проведение нервного возбуждения подчиняется закону «все или ничего», связано с одним интересным общим свойством живых клеток. Протоплазма любой клетки отделена от окружающей среды очень тонкой прозрачной мембраной. Так как эта мембрана неодинаково проницаема для различных ионов, обычно содержащихся в протоплазме клетки и в окружающей ее жидкости, вещество клетки заряжено отрицательно по отношению к внеклеточной жидкости. В нервной клетке животного этот внутренний отрицательный потенциал составляет примерно 70 милливольт. Подобным свойством обладают все клетки — будь то клетки растений, рыб или человека, какой бы части организма они ни принадлежали; насколько известно, каждая клетка имеет мембрану, между двумя поверхностями которой существует разность потенциалов. Это интересный пример глубокого сходства между живыми организмами. Если бы биолог не сталкивался с примерами такого рода сходства на каждом шагу, его задача была бы еще труднее.

Проведение нервного возбуждения становится возможным в результате специализации электрических свойств мембран живых клеток. Сигналы, поступающие через входные участки нейрона, вызывают эффекты (см. ниже), понижающие электрический потенциал протоплазмы в теле нейрона по сравнению с его нормальной величиной 70 милливольт. Это снижение потенциала распространяется на ближайший участок основания аксона. Если это снижение потенциала, или деполяризация, достигает достаточной величины, то аксон проявляет интересную, лишь ему свойственную особенность: происходит электрический «пробой» его оболочки. Точнее говоря, уменьшение его внутреннего потенциала с 70 до 60 милливольт ведет к внезапному изменению проницаемости мембраны, отделяющей протоплазму аксона от окружающей жидкости. В результате этого изменения наружные ионы натрия, которые ранее не могли пройти через мембрану, устремляются внутрь аксона, тогда как избыток внутренних ионов калия выходит наружу. Суммарный электрический эффект этого перемещения ионов состоит в резком изменении внутреннего потенциала в том участке аксона, где происходит «пробой»: нормальная величина ( 70 милливольт) сменяется слегка положительной величиной по отношению к окружающей жидкости. Вначале это чисто локальное явление, происходящее только у основания аксона. Однако возникающая при этом разность потенциалов между участком «пробоя» и соседней протоплазмой вызывает перемещение ионов, которое быстро приводит к деполяризации соседнего участка аксона, достаточной для того, чтобы вызвать «пробой» и в этом участке; при этом возникает ток, деполяризующий следующий участок аксона, и т. д. Таким образом импульс деполяризации, или потенциал действия, распространяется вдоль аксона. Это и есть тот нервный импульс типа «все или ничего», который со времени его открытия составлял загадку для нейрофизиолога.

Одно из свойств потенциала действия, имеющих первостепенное значение, — это скорость распространения. Она находится в сложной зависимости от химических и электрических свойств аксона и окружающей жидкости, а также от толщины аксона. Вообще нервные импульсы распространяются быстро по волокнам большей толщины и медленно — по тонким волокнам. В организме человека одни сигналы движутся со скоростью пешехода (3—4 километра в час, или 1 метр в секунду), другие — быстрее гоночного автомобиля (более 300 километров в час, или 100 метров в секунду).