Выбрать главу

Если в основе слуха лежит осязание, то в основе зрения лежит восприятие химических раздражителей. Каждый слышал о палочках и колбочках нашего глаза и знает, что это те рецепторные нервные клетки, которые каким-то путем преобразуют изображение на сетчатке в сигналы, необходимые головному мозгу для реализации зрительных ощущений. После всего сказанного выше читатель не удивится, узнав, что нейро-ны сетчатки генерируют под действием падающего на них света выходной электрический сигнал стандартного типа. Однако покажется, вероятно, неожиданным, что превращение света в электричество в палочках и колбочках отнюдь не основано на прямом фотоэлектрическом эффекте. По существу, эти клетки реагируют на химические раздражители. Их действие зависит от веществ, разлагающихся на свету примерно так же, как разлагаются соли серебра в эмульсии, покрывающей фотопластинку. Именно продукты этого расщепления, а не сам свет, деполяризуют нейрон и вызывают его электрическую активность.

Использование химического вещества в качестве «посредника», по-видимому, особенно распространено в выходных устройствах нервной системы — эффекторных нейронах. Конечный результат чрезвычайно сложной цепи взаимосвязанных процессов, посредством которых нервная система отвечает на входную информацию от рецепторных нейронов, состоит в изменении длины мышцы или в изменении активности железы. Первый из этих эффектов — процесс явно механический; таким же может быть и второй эффект, так как действие желез иногда регулируется мускулатурой, сжимающей или расширяющей соответствующие кровеносные сосуды.

Такого рода выход, точно так же как и в вычислительной машине, построенной человеком, характеризуется использованием слабого сигнала для управления гораздо более мощным источником энергии с це-лью получения полезного результата. В электронной управляющей системе управляющий сигнал может приводить в действие реле, замыкающее контакты силового питания мощного электромотора, который в конечном счете и выполняет желаемую работу. Природным аналогом управляющего реле в случае активации мышцы эффекторным нейроном служит определенное свойство мышечной ткани: в результате выделения особых химических веществ под действием приходящих нервных импульсов она переходит из расслабленного состояния в напряженное. Фактически мышцы состоят из пучков длинных, тонких волокон, очень сходных с аксонами. Аксоны эффекторных нейронов соединены с мышечным волокном при помощи синапсов, весьма похожих на межнейронные соединения. Химический посредник — в данном случае, как известно, ацетилхолин — передает пришедший нервный сиг-нал через синапс и генерирует здесь импульсы потенциала действия, распространяющиеся по всему мышечному волокну в результате процесса, связанного с такого же рода изменениями мембранной проницаемости, что и в аксоне. Но в отличие от нерва, где потенциал действия осуществляет чисто пассивную пере-дачу информационного сигнала, в мышце он вызывает сокращение волокна, т. е. специфически мышечную реакцию.

Интересную разновидность мышечной ткани мы находим у электрического угря. Эта рыба способна генерировать ток силой 1 ампер при напряжении 600 вольт, которым она оглушает или убивает свою добычу. Источником электрического разряда служат видоизмененные в процессе эволюции нервно-мышечные соединения; способность к мышечному сокращению здесь утрачена, тогда как потенциал действия в 60 милливольт, вызываемый освобождением ацетилхолина под влиянием нервных импульсов, сохранился. Кроме того, многочисленные специализированные мышечные клетки этого типа соединены последовательно, образуя под кожей угря целые «батареи». Когда все они разряжаются одновременно, получается нужный эффект.

У других рыб тот же принцип реализуется в более скромных размерах для посылки периодических разрядов электрического тока, используемых для ориентировки при плавании. Рецепторные нейроны в коже рыбы чувствительны к тем изменениям в распределении напряженности электрического поля, которые обусловлены взаимодействием посылаемых импульсов тока с окружающими предметами. Они способны обнаруживать градиенты поля всего лишь в одну миллионную вольта на 1 фут (1 фут равен примерно 30 сантиметрам). Поэтому рыба может обходить или отыскивать находящиеся поблизости даже мелкие

предметы, поскольку они слегка деформируют электрическое поле в воде.