Выбрать главу

Стабилизирующие механизмы, конструируемые инженерами, содержат весьма сложные вычислительные схемы, отличающиеся высокой точностью. Есть все основания полагать, что эффективная, координированная работа десятков мышц при ходьбе, вставании и т. п. также требует от вычислительных механизмов головного мозга выполнения операций, эквивалентных решению математических уравнений, содержащих много членов, каждый из которых должен определяться и преобразовываться со значительной степенью точности.

Нетрудно найти и другие примеры сложных координированных форм мышечной активности, осуществляемой под непрерывным автоматическим контролем головного мозга. В процессе дыхания участвует более 90 мышц, сокращение и расслабление которых происходит в надлежащем ритме под действием электрических импульсов от головного мозга; передачей этих импульсов занято свыше тысячи нервных волокон. Необычайно сложен и процесс глотания пищи. Действие мышц диафрагмы и языка должно быть синхронизировано. В нужный момент мягкое нёбо должно быть оттянуто назад для закрытия прохода в носовую полость, хрящи гортани должны приподняться и закрыть вход в трахею, а надгортанник — опуститься и освободить путь пищевому комку. И даже тогда, когда скучающий читатель просто подносит руку ко рту, чтобы подавить зевок, головному мозгу приходится посылать точно согласованные управляющие сигналы для синхронизации сокращений 58 различных мышц, определяющих движение и положение 32 костей пальцев и руки, не говоря уже об участии .многих мышц липа (всего их 31), изменяющих его выражение.

Значительный интерес представляет еще один тип рефлекса, контролируемого головным мозгом, при котором одиночный сенсорный стимул приводит к сложной последовательности двигательных актов, согласованных между собой в пространстве и во времени Такие рефлексы очень важны для нашего здовья и благополучия. Кроме того, на их примере мы впервые убедимся в том, что в головном мозгу, по-видимому, хранятся программы, или стандартные инструкции, для работы мышц и желез, которые, подобно программам, заложенным в электронные цифровые вычислительные машины, автоматически вступают в действие при появлении на входе определенного сочетания раздражителей.

Всем нам хорошо знаком рефлекс «вздрагивания». Он может быть вызван внезапным, неожиданным громким звуком. Наши глаза зажмуриваются, голова втягивается в плечи, колени подгибаются, а локти прижимаются к бокам. Более медленно, но так же автоматически протекает, например, рвотный рефлекс у кошек. Рвота может быть вызвана щекотанием в горле, попаданием в желудок испорченной пищи или внутривенным введением апоморфина. Любой из этих раздражителей немедленно и автоматически приводит к одной и той же цепи событий: животное принимает характерную позу и открывает рот, выдох задерживается и вместо него происходит глубокий вдох, кровяное давление падает, сокращения сердца замедляются; затем происходит выделение слюны, определенные мышцы расслабляются, в то время как другие сокращаются, и начинается рвота.

Таким образом, при этих сложных «программированных» рефлексах, управляемых головным мозгом, одно лишь появление определенного сенсорного раздражителя отвлекает множество независимо функционирующих клеток тела от их текущей организованной деятельности и мобилизует их, как единую систему, на выполнение общей задачи. Этот высокоупорядоченный комплекс реакций характеризуется точным согласованием отдельных его частей в пространстве и времени и совершается без какого-либо произвольного стимула со стороны животного. В гл. 5 мы рассмотрим данные о том, что такого рода заложенные в мозгу программы реакций, важные для здоровья и благополучия как кошек, гак и людей, поразительно широко используются в различных формах поведения и у низших животных.

Выбор реакции: роль ретикулярной активирующей системы

При использовании электронных вычислительных машин для решения более сложных задач иногда бывает необходимо, чтобы машина делала выбор из двух или нескольких видов реакции на определенную входную информацию. Рассмотрим, например, управляющую систему снаряда лишнего действия с автоматическим наведением на цель. В течение большей части полета от места запуска к цели обычно осуществляется тип управления, при котором информация, необходимая вычислительной машине для пилотирования снаряда, поступает по радио со стартовой площадки или, возможно, вырабатывается бортовой аппаратурой Однако для конечного участка траектории может быть запланирован переход от этого типа управления к окончательному наведению на цель, при котором машина использует информацию от радиолокатора, находящегося в носовой части снаряда. Такой автоматический переход от одного типа управления к другому может быть достигнут с помощью oсобой программы для определенной части вычислительной машины, которая должна «наблюдать» за сигналами от радиолокатора и переключать всю машину на «