Выбрать главу
Рис. 17. Изменения в ЭЭГ нормального человека при переходе от бодрствования к дремоте и сну.

у нормального взрослого человека в покое, получили название альфа-ритма. Альфа-ритм характерен для расслабленного состояния, но и он в свою очередь уступает место другим формам ЭЭГ, когда человек впадает в дремоту (кривая В) и когда он засыпает (кривая Г); амплитуда изменений потенциала здесь наибольшая, но волны длинные, медленные, как бы перекатывающиеся. После нескольких часов сна ЭЭГ бывает похожа на кривую Д. Если человек не засыпает, а на короткое время теряет сознание в результате большой перегрузки (например, при резких маневрах самолета на большой скорости, когда у летчика появляется «черная пелена»), ЭЭГ еще больше сглаживается, а иногда колебания потенциала даже совсем исчезают.

Прежде чем рассматривать природу этих электрических волн головного мозга, уместно отметить одно интересное применение электроэнцефалографии в связи с космическими полетами. В Институте мозга Калифорнийского университета в Лос-Анжелесе разрабатываются методы оценки общей работоспособности отдельных людей в необычных условиях, с которыми можно встретиться в космическом полете, например в условиях больших ускорений и вибрации. Оказалось, что ЭЭГ служит более прямым и надежным показателем реактивности мозга, чем данные визуального наблюдения или измерение других физических показателей. По форме ЭЭГ легко прослеживается переход от нормальной реактивности к вялости и невнимательности при постепенно нарастающем ускорении, а появление «черной пелены» при очень большом ускорении отмечается внезапным сглаживанием кривой. имеются даже указания на принудительную синхронизацию волн под действием очень сильной вибрации; в результате этого субъект вполне может оказаться неспособным выполнять задания, требующие ловкости или умственного напряжения, хотя это вряд ли заметно скажется на показаниях приборов, применяемых обычно для наблюдения за физическим состоянием космонавта.

Для того чтобы ускорить разработку методов, которые могли бы оказаться полезными, исследования в Институте мозга проводились главным образом на кошках и обезьянах, а не на человеке. Но применимость таких методов к людям была подвергнута про-верке в интересном исследовании, в котором записывали ЭЭГ у летчиков, выполнявших боевые маневры на реактивных истребителях. При этом были обнаружены индивидуальные различия в степени влияния таких относительно высоких нагрузок на ЭЭГ. Последующий просмотр личных дел летчиков выявил также тесную корреляцию между степенью влияния летных маневров на ЭЭГ испытуемого и числом аварий и аварийных ситуаций, отмеченных у него в прошлом!

Природа электрических волн мозга

Существование электрических волн мозга на первый взгляд не кажется неожиданным. Мы знаем, что функция мозга имеет электрическую природу и что в любой момент миллионы, а может быть, и миллиарды его нейронов замыкают и размыкают соответствующие электрофизиологические цепи и посылают токи в различных направлениях. Поскольку все электрические токи производят эффекты, которые можно обнаружить на расстоянии, следует ли удивляться тому, что между металлическими пластинками, плотно прижатыми к различным участкам головы, регистрируются очень малые электрические потенциалы? Однако в действительности нас поражает не самый факт существования этих потенциалов, а скорее та форма электрических волн, которая иногда наблюдается. Конечно, вполне возможно, что типичная форма ЭЭГ при бодрствовании (рис. 17,А) представляет собой суммарный результат миллионов ничтожных токов, идущих в разных направлениях и в разные моменты времени в нейронах, находящихся поблизости от наружного измерительного электрода; такого рода флуктуации электрического напряжения физики и инженеры-связисты называют «шумом», который, как известно, является следствием суммирования множества случайных, не связанных друг с другом очень слабых электрических эффектов. Однако форма ЭЭГ на рис. 17, Б — это уже нечто иное. Именно регулярность колебаний потенциала, образующих альфа-ритм, сразу же вызвала интерес к электрическим волнам мозга. Такую регулярность можно объяснить только значительной синхронностью нейронных токов. Это явление выглядит еще внушительнее, если регистрировать ЭЭГ одновременно с помощью нескольких пар электродов, укрепленных на обеих сторонах затылочной области, и сравнивать получаемые записи современным электронным методом взаимно-корреляционного анализа. Такие сравнения показали, что нейронные токи синхронизированы не только на небольших местных участках; оказывается, подобная согласованная синхронизация охватывает существенную часть всего головного мозга!