Выбрать главу

Металлурги брали сурьму и свинец, сливали два расплава и тщательнейшим образом перемешивали. Сплав застывал. Ученые помещали под микроскоп кусочек сплава, и перед ними возникала мозаика крохотных кристаллов. Причем одни из них были образованы сурьмой, другие — свинцом. Типичная механическая смесь кристаллов двух металлов. Механические смеси образуются также при сплавлении алюминия с кремнием, висмута с кадмием и т. д.

Ученые заметили, что, как правило, такие сплавы — механические смеси — при изменении процентного содержания входящих в них компонентов изменяют свою температуру плавления, причем она всегда ниже, чем температура самого тугоплавкого компонента. Сплав с таким процентным содержанием компонентов, при котором он имеет минимальную температуру плавления, называют эвтектическим.

Сплав замещения.

Сплавы — механические смеси — очень широко применяются в технике. Ведь они состоят из кристалликов, имеющих разные физические свойства, и это позволяет получать, казалось бы, немыслимые обычно сочетания полезных качеств.

Возьмем, к примеру, широко распространенные антифрикционные подшипниковые сплавы, представляющие механическую смесь свинца, олова, меди и сурьмы. В мягкой, податливой основной массе свинца и олова располагаются твердые, износостойкие кристаллы сурьмы. Такое сочетание свойств обеспечивает длительную службу, хорошую прирабатываемость и малый коэффициент трения в подшипниках, залитых таким сплавом.

Словно повинуясь беспощадному зову, устремлялось судно к магнитной скале…

Многие металлы обладают неограниченной возможностью растворения друг в друге. Так, в меди может быть растворено неограниченное количество никеля, в алюминии — магния. Однако нередко встречаются и сочетания металлов, обладающих весьма ограниченной растворимостью друг в друге. Так, свинец плохо растворяется в цинке. Если слить расплавленные цинк и свинец, то образуются два слоя: сверху — цинк с растворенным в нем свинцом, снизу — свинец, в котором растворен цинк.

Чтобы разобраться, в чем тут причина, заглянем в кристаллическую структуру сплавов.

Когда сплав находится в жидком состоянии, нам ясно: молекулы одного металла находятся между молекулами другого в хаотическом общем движении.

Но вот сплав застывает. Атомы начинают образовывать кристаллы.

И оказывается, что в таком растворе атомы растворенного металла просто-напросто становятся на места атомов растворителя в образуемой ими кристаллической решетке.

Сплав внедрения.

Но так происходит только в тех случаях, когда величины атомов растворенного металла и металла-растворителя близки по размерам, не отличаются друг от друга диаметром, скажем, больше чем на 15 процентов. Такие сплавы и называют твердыми растворами замещения.

Таких сплавов современная металлургия знает множество. К ним относятся сплавы железа с хромом и никелем, кобальта с железом, меди с никелем.

Наши монеты, которые мы называем никелевыми, в действительности представляют собой раствор меди в никеле. Медь добавляется, чтобы монета меньше истиралась, изнашивалась. Медные монеты — тоже раствор, но уже алюминия в меди. Качество такого сплава также лучше, чем чистой меди.

В тех случаях, когда в металле со сравнительно крупными атомами растворяется вещество со значительно меньшими атомами, последние внедряются в кристаллическую решетку металла-растворителя на свободные места. Так же в ящике, в котором уложены крупные футбольные мячи, может между ними разместиться значительное количество крохотных мячиков для настольного тенниса. Такие сплавы называются растворами внедрения. К этому виду сплавов относится, например, сплав железа с азотом.

Иногда компоненты сплава вступают между собой в химическую реакцию. Таков, например, сплав вольфрама с углеродом. В этом сплаве возникает новое химическое вещество — кристаллы карбида вольфрама— со своими собственными и химическими и физическими свойствами. Оно образует с остальным металлом сплава механическую смесь.

Таким образом, один и тот же сплав может сочетать в себе и механическую смесь элементов и химическое соединение их — раствор друг в друге. Причем не только состав определяет ту или другую форму состояния сплава, но и то, как происходила его кристаллизация, каким термообработкам он был подвергнут, и так далее.