Итак, действие радиации на хромосомы играет очень важную роль:
во-первых, при острой лучевой болезни;
во-вторых, при отдаленных лучевых поражениях;
и в-третьих, при облучении очень малыми дозами, где все прочие эффекты оказываются несущественными.
Это все относится к организмам, которые были непосредственно облучены. А для потомства роль повреждения наследственности очевидна.
Что стоит в центре любой экспериментальной научной работы? По моему, рисование кривых линий. Опыты ставят, чтобы найти закономерность, которая изображается какой-нибудь кривой. А анализ полученных результатов сводится к тому, чтобы объяснить, почему кривая пошла не так, а эдак.
Кривые, получаемые в опытах, не слишком разнообразны: прямая линия (мы ее тоже называем кривой, правда, прямолинейная кривая — бессмыслица, но мы как-то привыкли к этому); кривая, загнутая вверх; кривая, загнутая вниз; эс-образная кривая (то есть в виде латинской буквы «S»), кривая с максимумом, которая сначала идет вверх, а потом загибается вниз. Вот, пожалуй, и все. Встречаются, конечно, и более хитрые кривые, но с ними ученые стараются меньше иметь дела: слишком это сложно. И когда получают такую сложную кривую, то или из нее делают целую науку, либо просто приводят без всяких комментариев.
Сколько я типов кривых перечислил? Пять. Как будто маловато. И человек, который никогда не имел дела с экспериментальными кривыми, может подумать, что, во-первых, это, должно быть, очень скучное и однообразное занятие, а во-вторых, что в этих пяти типах кривых разобраться очень просто. Однако простота и однообразие только кажущиеся. Можно всю жизнь прожить, получая и анализируя кривые, и считать это самым увлекательным делом. А любая новая зависимость, даже и самая простая — прямая линия, — заставляет поломать голову, но она же часто щедро вознаграждает за вложенный в нее труд.
При изучении мутаций самый главный вопрос — тоже получение кривых и их объяснение. Начнем с генных мутаций.
Главный результат сводится к тому, что зависимость числа мутаций от дозы выражается самой простой из возможных зависимостей — прямой линией. Прямая линия получается всегда: при действии рентгеновыми лучами и нейтронами; при облучении, заканчивающемся за несколько секунд, и при растягивании его на несколько дней, при высокой и низкой температуре, в опытах на излюбленной генетиками дрозофиле и на любых других организмах.
Но мало того, что почти все опыты дают прямые линии. Ведь и прямые линии могут идти по-разному, иметь разный наклон. Однако если поставить опыты по облучению дрозофил разными дозами рентгеновых, бета- и гамма-лучей разной жесткости, то для зависимости числа мутаций от дозы вовсе не получится пучка прямых линий, расходящихся веером. Нет, все экспериментальные точки (разумеется, в пределах точности опыта) лягут на одну прямую. Единственное серьезное исключение — быстрые нейтроны. Довоенные опыты показывают, что нейтроны менее эффективны, чем другие виды лучей. После войны некоторые авторы получили прямо противоположные результаты: нейтроны в несколько раз более эффективны. Теперь же пришли к выводу, что нейтроны оказывают ненамного больший эффект, чем рентгеновы лучи. В чем тут дело? Ни нейтроны, ни мухи не могли за это время стать другими. Генетики ставили опыты совершенно одинаково… Дело в физиках. Дозиметрия нейтронов дело не простое. Нетрудно подсчитать, сколько нейтронов «попало» в облучаемый объект. Но ведь для биологического эффекта важна энергия, которая поглотилась живыми клетками. А поглощенную энергию определить было нелегко.
Из этих простых фактов можно сделать важные выводы. Прямолинейная зависимость эффекта от дозы говорит о том, что возникновение генной мутации — реакция одного попадания, другими словами, для возникновения мутации необходимо и достаточно, чтобы через хромосому прошла всего одна ионизирующая частица.
Но проход частицы может оставить в хромосоме разную энергию. Какая же энергия необходима для возникновения мутации? Если бы для этого нужна была большая энергия, больше энергии одной ионизации, то редко ионизирующие (жесткие) лучи не при всяком проходе оставляли бы нужную энергию и потому должны были быть менее эффективными. Однако в опытах такого не наблюдается. Следовательно, для возникновения мутации достаточно энергии одной ионизации.