Самым существенным условием перехода от аксиом механики и от закона тяготения, генезис которых был завершающим этапом научной революции, к органическому развитию классической науки были дифференциальное и интегральное исчисления в их классической аналитической форме. Коснемся одного вопроса, связанного с историей инфинитезимального анализа. Почему Ньютон не применял метод флюксий в «Началах»? На сей счет существует много объяснений, и убедительных, и простых; например, ссылаются на непонятность нового математического метода для читателей «Начал». К этим объяснениям следует добавить далеко не столь простое и бесспорное, но тем не менее необходимое соображение. При любой попытке рассматривать непрерывное движение, доводя его до пункта, где движения уже нет, а направление движения сохраняется, мысль как бы совершает скачок к некоторому логически парадоксальному заключению. Даже у самых первых математиков, вводивших анализ бесконечно малых, было некоторое предвосхищение идеи предела, неясная и логически парадоксальная интуиция, охватывающая и связывающая воедино многоугольник и круг у Николая Кузанского, несущественную по своей малости песчинку и песчаную гору у Лейбница, расстояние и скорость в данной точке у Ньютона. В эпоху, когда чисто логические понятия заменялись понятиями, допускающими чувственные аналоги, математические объекты были интуитивно представимыми, иначе они бы не стали основой новой картины мира. Сенсуальная интуиция, необходимая основа рационализма XVII в., обгоняла логические конструкции бесконечности и бесконечного деления, мысль шла от образа к идее. Несомненно, вулсторпские размышления Ньютона соответствовали такому направлению мысли, и он повторил в своем творчестве этот путь, казавшийся ему естественным и понятным. Таким образом, «непонятность» аналитического изложения закона тяготения вытекала из стиля естественнонаучного и математического мышления XVII в.
Но существовала и более общая основа игнорирования метода флюксий в «Началах». Она связана с неудачей эфирной концепции тяготения. Для Ньютона метод флюксий был не только новым математическим методом, но и натурфилософским и физическим представлением, концепцией основных свойств мироздания. Эволюция физики XVIII—XIX вв. позволяет объяснить положение, сложившееся в XVII в. Физическим эквивалентом дифференциального исчисления стало представление о близкодействии, идея физической реальности поля. В период подготовки «Начал» идея близкодействия могла получить лишь форму эфирной концепции тяготения, картезианскую форму. Но это противоречило основной установке Ньютона — однозначности системы мира; с эфиром ученый мирился в оптике и в химических концепциях, но в «Начала» эфиру путь был закрыт.
Отсюда — поздняя публикация математических трудов Ньютона, хотя сроки публикации определялись и менее глубокими, но более явными стимулами, в частности соображениями приоритета. Но тут была и собственно гносеологическая причина. Ньютон отказывался публиковать свои работы не только из неприятия полемики, не только по свойствам своего, вообще говоря, нелегкого характера — он как бы интуитивно чувствовал всю необратимость эволюции познания, выраженную в достоверных (хотя бы в определенных границах) констатациях и обобщениях науки. Стремление к полной достоверности, к бесспорности — это внутренний (как уже было сказано, возможно, неосознанный) импульс, заставлявший избегать дискуссионных утверждений. Но что такое достоверность?
Ньютон видит ее в согласии с опытом: математические конструкции становятся достоверными, когда они приобретают онтологическую ценность, становятся суждениями о реальном мире, экспериментально проверенными утверждениями. Основы дифференциального и интегрального исчислений стали отвечать этому требованию, когда было создано математическое естествознание, в основном в XVIII в. В конечном счете именно с этим интуитивным представлением о математике и ее онтологической ценности, с бэконовским и локковским сенсуализмом, ставшим внутренним, еще раз подчеркнем, безотчетным психологическим стимулом Ньютона, связаны поздние сроки публикации его математических трудов.