Если мы раскроем эти труды («Универсальную арифметику» и уже упоминавшиеся работы, положившие начало анализу бесконечно малых), мы увидим, что Ньютон рассматривает физические задачи и выбирает те математические понятия и методы, которые предполагают существование физических эквивалентов.
Каких именно эквивалентов? Чего именно ждет математика Ньютона?
На этот вопрос можно ответить, ближе познакомившись с основной идеей теории флюент и флюксий. Здесь понадобятся некоторые предварительные пояснения.
Метод флюксий и лейбницевский метод дифференциалов получили непротиворечивую форму, когда О. Коши ввел понятия предела и переменной величины, стремящейся к пределу. Переменная называется бесконечно малой, если ее пределом служит нуль. Анализ бесконечно малых рассматривает предел отношения между приращениями двух переменных, из которых одна является функцией другой, например предельное отношение приращения пути к приращению времени. Такое предельное отношение называется, как известно, производной функции. Скорость в данной точке — это предел отношения приращения пути к приращению времени, производная пройденного пути по времени. Нахождение производной по первообразной функции, например нахождение скорости по пройденному пути, называется дифференцированием. Обратная операция — нахождение первообразной функции по ее производной — называется интегрированием. Можно найти производную от производной. Вторая производная от пути по времени — это ускорение.
В «Методе флюксий» Ньютон предупреждает, что введенные им математические понятия представляют собой обобщение категорий механики, что уподобление флюксии скорости нарастания пройденного пути — лишь исходная аналогия и наиболее важный пример общего соотношения между флюентой и флюксией. Соответственно независимой переменной может служить любая величина, если к ней как к заведомо равномерно и бесконечно изменяющейся отнесены все другие величины. Такое обобщенное понятие времени мы встречаем и в «Началах». Подобное обобщение открывает дорогу новым физическим понятиям. Представим себе, что независимой переменной служит пространство, например пространственное расстояние от центра тяготения, и нам нужно вычислить силу тяготения в каждой точке. Сейчас мы знаем, что решение подобных задач связано с представлением о силовом поле — пространстве, где каждой точке соответствует определенное значение силы, действующей на единичную массу. Мы знаем также, что подобная формальная континуализация тяготения, заполняющая пространство чисто математическими величинами, превратилась впоследствии в картину материальной среды, передающей силу от точки к точке и (после того как была доказана конечная скорость распространения взаимодействия) от мгновения к мгновению.
Таким образом, математическое обобщение механики дальнодействия вело к физике близкодействия.
Представление о флюксии как о предельном отношении (вернее, тенденция к такому представлению) у Ньютона уживалось с иной тенденцией — с идеей бесконечно малых величин, рассматриваемых как не протяженные, но находящиеся в определенных отношениях друг к другу. Когда Ньютон говорит о «первых и последних отношениях», то иногда неясно, имеет ли он в виду предельное отношение переменных величин или же отношение предельных постоянных значений.
В целом Ньютон склоняется к идее предельных отношений между величинами, которые остаются переменными и никогда не достигают своих пределов. Но в этом вопросе в «Методе флюксий» и «Началах» нет полной определенности. У Ньютона теория пределов существовала не в виде законченной концепции, а в виде некоторой программы или тенденции, у него была известная разноголосица в понимании и обосновании бесконечно малых.
Лейбниц независимо от Ньютона сформулировал методы дифференциального и интегрального исчислений. Он ввел их по существу в современной форме. Нас интересует определение бесконечно малой у Лейбница. В его математических идеях немало противоречий, и, кроме того, они изменялись в течение жизни ученого. В работах Лейбница можно найти различное понимание основных математических категорий, и прежде всего различное понимание бесконечно малых.
Лейбниц говорил о дифференциалах как о бесконечно малых приращениях независимой переменной и ее функции, причем под бесконечно малой подразумевалась постоянная величина — приращение настолько малое по сравнению с исходной величиной, что его можно приравнять к нулю. Это «можно приравнять» не означает, что бесконечно малая действительно представляет собой нуль. Приравнивание к нулю оправдывается ничтожностью бесконечно малой величины по сравнению с величинами, к которым она прибавляется или из которых она вычитается. В 1702 г. Лейбниц писал П. Вариньону: «Несравненно меньшее бесполезно принимать в расчет по сравнению с несравненно большим: так, частица магнитной жидкости, проходящая через стекло, несравнима с песчинкой, песчинка — с земным шаром, земной шар — с мирозданием» (18, 59).