Выбрать главу

Таким образом, мы получаем следующую таблицу:

1, 2, 3 ...

ω, ω + 1, ω + 2 ...

ω*2, ω*2 + 1, ω*2 + 2 ...

ω*3, ω*3 + 1, ω*3 + 2 ...

ω2, ω2 + 1,  ...

ω2 + ω, ω2 + ω*2, ω2 + ω*3 ...

ω2*2, ...

ω2*2 + ω,  ...

ω3, ...

ω4, ...

ωω, ...

Это — первые трансфинитные числа, числа второго класса, как их называет Кантор. К ним мы подходим просто посредством продолжения счёта за пределы обыкновенной счётной бесконечности, т.е. с помощью вполне естественного, однозначно определённого последовательного продолжения обычного счёта в конечном. Подобно тому как мы до сих пор считали лишь 1-ю, 2-ю, 3-ю, ... вещь множества, так теперь мы считаем ω-ю, (ω + 1)-ю, ωω-ю вещь. При таком положении вещей тотчас же сам собою напрашивается вопрос: нельзя ли при помощи этих трансфинитных чисел пересчитать множества, которые в обычном смысле несчётны?

Кантор в соответствии с этим ходом мыслей успешно построил теорию трансфинитных чисел и создал для них полное исчисление. Итак, в конце концов, благодаря гигантской совместной работе Фреге, Дедекинда и Кантора, бесконечное было возведено на трон и наслаждалось временем своего высшего триумфа. Бесконечное в своём дерзком полёте достигло головокружительной высоты успеха.

Но реакция не заставила себя ждать; она разыгралась очень драматически. Произошло нечто, аналогичное тому, что случилось при развитии исчисления бесконечно малых. На радостях по поводу новых богатых результатов стали явным образом недостаточно критически относиться к законности умозаключений; поэтому уже при простом образовании понятий и применении умозаключений, постепенно ставших обычными, выявились противоречия, сначала единичные, а затем всё более резкие и всё более серьёзные: так называемые парадоксы теории множеств. В особенности это относится к противоречию, найденному Цермело и Расселом, опубликование которого оказало на математический мир прямо-таки катастрофическое действие. Перед лицом этих парадоксов Дедекинд и Фреге фактически отказались от своей точки зрения и очистили поле битвы.

Дедекинд долго сомневался перед тем, как выпустить новое издание своей работы «Что такое числа, и чем они должны быть» («Was sind und was sollen die Zahlen»), которая в своё время открыла новую эпоху; у Фреге так же была тенденция считать свою книгу «Основные законы арифметики» («Grundgesetze der Arithmetik») ошибочной, в чём он признаётся в одном из своих послесловий. И на учение Кантора с различных сторон были произведены бурные нападки. Контрдвижение было столь стремительно, что общеупотребительнейшие и плодотворнейшие понятия математики, простейшие и важнейшие её умозаключения оказались под угрозой, и применение их должно было быть запрещено. Правда, не было недостатка и в защитниках старого; но мероприятия защиты были очень слабы, и они не были направлены единым фронтом в нужную сторону. Лекарств против парадоксов рекомендовали слишком много, методы объяснений были слишком разнообразны.

Надо согласиться, что состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо. Подумайте: в математике — этом образце достоверности и истинности, — образование понятий и ход умозаключений, как их всякий изучает, преподаёт и применяет, приводят к нелепостям. Где же искать надёжность и истинность, если даже само математическое мышление даёт осечку?

Но существует вполне удовлетворительный путь, по которому можно избежать парадоксов, не изменяя при этом нашей науке. Те точки зрения, которые служат для открытия этого пути и те пожелания, которые указывают нам направление, суть следующие:

1. Мы будем заботливо следить за плодотворными способами образования понятий и методами умозаключений везде, где является хотя бы малейшая надежда, будем ухаживать за ними, поддерживать их, делать их годными к использованию. Никто не может изгнать нас из рая, который создал нам Кантор.