Выбрать главу

Отсюда, в частности, следует, что в смысле конечной установки нельзя применить альтернативу, согласно которой равенство, подобное вышеприведённому, включающее в себя неопределённый числовой знак, либо выполняется для любого числового знака, либо опровергается противоречащим примером. Действительно, эта альтернатива, являющаяся применением закона Tertium non datur (закона исключённого третьего), существенно опирается на предположение, что утверждение общей действенности этого равенства может быть отрицаемо.

Во всяком случае констатируем: если мы остаёмся в области конечных высказываний, как нам это и приходится делать сначала, то в таком случае имеют место не поддающиеся обозрению логические соотношения, и эта необозримость доходит до нестерпимости, когда слова «все» и «существуют» комбинируются и вставляются в теоремы. Во всяком случае, те логические законы, которыми люди, с тех пор как они мыслят, всегда пользовались и о которых учил уже Аристотель, несправедливы в конечном. Мы бы могли найти выход в том, чтобы установить логические законы, справедливые в области конечных высказываний; но это не принесло бы нам никакой пользы, так как мы ведь не хотим отказаться от пользования простыми законами аристотелевой логики, и никто, говори он даже ангельским языком, не удержит людей от того, чтобы отрицать любые утверждения, образовывать частичные суждения и применять закон исключённого третьего. Как же нам теперь быть?

Вспомним, что мы — математики и в качестве таковых уже не раз находились в аналогичном затруднительном положении и что тогда нас выводил из этого положения гениальный метод идеальных элементов. Некоторые яркие примеры применения этого метода я приводил уже вам в начале доклада. Так же, как было введено i = sqrt(-1) для того, чтобы удержать законы алгебры в простейшем виде, например, теорему о существовании и числе корней уравнения; так же, как произошло введение идеальных факторов, опять-таки для того, чтобы оставить в силе простейшие законы делимости для целых алгебраических чисел, когда мы, например, вводим общий идеальный делитель чисел

2 и (1 + sqrt(-5)),

хотя в действительности таковой не существует; точно так же и здесь к конечным высказываниям мы должны присоединить идеальные высказывания для того, чтобы удержать формально простые законы обычной аристотелевой логики. И странным образом случилось так, что определения и выводы, против которых Кронекер с такой страстью возражал, оказались точной копией того, что тот же Кронекер с таким энтузиазмом превозносил в теории чисел у Куммера и чем он восхищался как высшим математическим достижением.

Как же мы теперь придём к идеальному высказыванию? Замечательно и, во всяком случае, благоприятно и покровительствует нам следующее обстоятельство. Для того, чтобы попасть на путь к этим идеальным высказываниям, мы должны лишь естественным и последовательным образом продолжить то развитие основ математики, которое имело место уже до сих пор. Действительно, припомним, что даже элементарная математика уже не остаётся на точке зрения наглядной теории чисел. Содержательно наглядная теория чисел, как мы её до сих пор понимали, не включает в себя метод алгебраического буквенного исчисления. В ней формулы всегда употребляются только для сообщения; буквы означают числовые знаки, и с помощью равенства мы сообщаем о совпадении двух знаков. Напротив того, в алгебре мы пользуемся буквенными выражениями как образами, которые сами по себе самостоятельны, и благодаря им содержательные теоремы теории чисел принимают формальный характер. На место высказываний о числовых знаках выступают формулы, которые, со своей стороны, являются конкретными объектами наглядного созерцания, а на место содержательного теоретико-числового доказательства выступает вывод одной формулы из другой по известным правилам.

Таким образом, уже в алгебре имеет место увеличение числа конечных объектов. До сих пор это были только числовые знаки, как, например, 1, 11, 11111. Только они служили объектами содержательного рассмотрения. Но уже в алгебре математическая практика выходит за эти пределы. Даже когда некоторое высказывание с нашей конечной точки зрения ещё допустимо в связи со ссылками на содержательное, как, например, теорема о том, что