Выбрать главу

И когда мы спрашиваем: можно ли себе представить неевклидово пространство? — то это значит: можно ли для нас представить себе мир, в котором были бы замечательные естественные предметы, представляющие приближенно форму неевклидовых прямых, и замечательные естественные тела, часто претерпевающие движения, приблизительно подобные неевклидовым движениям? Я показал в «Науке и гипотезе», что на этот вопрос надо ответить утвердительно.

Часто делалось замечание о том, что если бы все тела Вселенной начали одновременно и в одинаковой пропорции расширяться, то у нас не было бы никаких средств заметить это, потому что все наши измерительные инструменты увеличивались бы одновременно с самими предметами, для измерения которых они служат. После этого расширения мир продолжал бы свой ход и ничто не говорило бы нам, что произошло столь важное событие.

Другими словами, два мира, которые были бы подобны друг другу (понимая «подобие» в смысле третьей книги «Геометрии»), были бы совершенно неразличимы. Мало того: миры не только будут неразличимы, если они одинаковы или подобны, т. е. если можно перейти от одного к другому, меняя оси координат или меняя масштаб, служащий для измерения длин; они будут также неразличимы, если можно перейти от одного к другому путем какого бы ни было «точечного преобразования». Объяснюсь подробнее. Я предполагаю, что каждой точке одного соответствует одна и только одна точка другого и обратно; и, сверх того, пусть координаты одной точки будут непрерывными функциями, безразлично какими, координат соответствующей точки. Затем я предполагаю, что каждому предмету первого мира соответствует во втором предмет той же природы, помещающийся как раз в соответствующей точке. Я предполагаю, наконец, что это соответствие, осуществившееся в начальный момент, сохраняется на неопределенное время. Тогда у нас не было бы никакого средства отличить эти два мира один от другого. Когда говорят об относительности пространства, обычно понимают ее не в таком широком смысле, тогда как ее следовало бы понимать именно таким образом.

Если один из этих миров есть наш евклидов мир, тогда то, что обитатели его назовут прямою, будет наша евклидова прямая, а то, что обитатели второго мира назовут прямою, будет кривая, обладающая такими же свойствами по отношению к тому миру, который они населяют, и по отношению к тем движениям, которые они назовут движениями без деформации; потому их геометрией будет евклидова геометрия, но их прямая не будет наша евклидова прямая. Это будет своя прямая, преобразованная путем того точечного преобразования, которое позволяет переходить от нашего мира к их миру; прямые этих людей не будут наши прямые, но они будут иметь между собой те же самые отношения, как наши прямые между собой; вот в каком смысле я говорю, что их геометрией будет наша геометрия. Тогда, если мы захотим решительно объявить, что они ошибаются, что их прямая не есть истинная прямая, если мы не пожелаем признать, что подобное утверждение не имеет никакого смысла, то мы по крайней мере должны будем признать, что у этих людей нет каких-либо средств заметить свою ошибку.

§ 2. Качественная геометрия

Все это сравнительно легко для понимания, и я уже так часто повторял это, что считаю бесполезным дальше распространяться об этом предмете. Евклидово пространство не есть форма, наложенная на нашу чувственность, потому что мы можем вообразить себе неевклидово пространство; но оба пространства — евклидово и неевклидово — имеют одно общее основание, тот аморфный континуум, о котором я говорил вначале; из этого континуума мы можем извлечь то евклидово пространство, то пространство Лобачевского — так же как, реализуя соответствующее градуирование, мы можем из неградуированного термометра сделать либо термометр Фаренгейта, либо термометр Реомюра.

Тогда возникает вопрос: не является ли этот аморфный континуум, который наш анализ оставил существующим, формой, наложенной на нашу чувственность? Мы расширили бы тюрьму, в которой заключена наша чувственность, но это все-таки была бы тюрьма.

Эта непрерывность обладает известным числом свойств, свободных от всякой идеи измерения. Исследование этих свойств составляет предмет науки, разработанной несколькими великими геометрами, в особенности Риманом и Бетти, и получившей название Analysis Situs. В этой науке отвлекаются от всякой количественной идеи; например, если констатируется, что точка B лежит на некоторой линии между точками A и C, то довольствуются этим утверждением и не трудятся узнать, прямая ли линия ABC или кривая, равна ли длина АВ длине АС или вдвое больше ее.