Если вся энергия, вышедшая из нашего излучателя, попадает в приемник, то последний испытывает как бы механический толчок, который в некотором смысле представляет собой компенсацию отдачи, испытанной излучателем; противодействие будет равно действию, но оно не будет с ним одновременно; приемник оттолкнется, но не в тот момент, когда излучатель испытает отдачу. Если же энергия распространяется беспредельно, не встречая приемника, то компенсация не произойдет никогда.
Но, быть может, можно сказать, что пространство между излучателем и приемником, в котором возмущение распространяется от первого ко второму, не является пустым, а что оно наполнено не только эфиром, а и воздухом или (в междупланетных пространствах) некоторым весьма тонким, но все же весомым флюидом; что это вещество, как и приемник, испытывает толчок в момент падения на него энергии, а также отдачу, когда возмущение оставляет его? Это спасло бы принцип Ньютона, но это неверно; если бы энергия в процессе распространения всегда была связана с некоторым вещественным субстратом, то движущееся вещество увлекало бы свет. Однако Физо показал, что это не так, по крайней мере для воздуха. Впоследствии это подтвердили Майкельсон и Морли. Можно также предположить, что движения вещества в собственном смысле точно компенсируются движениями эфира, но это привело бы нас к тем соображениям, какие только что рассмотрены. Принцип, понимаемый таким образом, будет в состоянии объяснить все, ибо каковы бы ни были видимые движения, всегда можно придумать гипотетические движения, их компенсирующие. Но если он и может все объяснить, то он не позволяет нам ничего предвидеть, он не позволяет нам выбирать между различными возможными гипотезами, поскольку он все объясняет заранее. Стало быть, он становится бесполезным.
Кроме того, предположения, которые пришлось бы сделать о движениях эфира, не очень удовлетворительны. Так, естественно было бы предположить, что если электрические заряды удваиваются, то скорости различных атомов эфира также удваиваются; но для компенсации необходимо, чтобы средняя скорость эфира учетверилась.
Вот почему я долгое время считал, что эти теоретические выводы, противоречащие принципу Ньютона, в конце концов будут отвергнуты. Однако новейшие опыты, в которых исследовалось движение электронов, испускаемых радием, скорее их подтверждают.
Принцип Лавуазье. Перехожу к принципу Лавуазье, касающемуся сохранения масс. Конечно, это — принцип такого рода, что его нельзя затронуть без того, чтобы не поколебать механику. И тем не менее теперь некоторые думают, что он кажется нам верным только потому, что в механике рассматриваются не слишком большие скорости, но что он перестал бы быть верным для тел, обладающих скоростями, сравнимыми со скоростью света. Но в настоящее время такие скорости считаются осуществленными: катодные лучи и лучи радия состоят из весьма малых частиц или из электронов, летящих со скоростью, которая, без сомнения, меньше скорости света, но все же составляет от одной десятой до одной трети ее.
Эти лучи отклоняются как в электрическом, так и в магнитном поле; сравнивая то и другое отклонение, можно одновременно измерить скорость электронов и их массу (или, вернее, отношение их массы к их заряду). Но оказалось, что когда эти скорости приближаются к скорости света, необходимо вносить поправки. Эти частицы, будучи заряжены, не могут перемещаться, не приводя в колебание эфир; чтобы привести их в движение, необходимо преодолеть инерцию двоякого рода — инерцию самой частицы и инерцию эфира. Поэтому полная или наблюдаемая масса, которую именно и измеряют, состоит из двух частей: из действительной или механической, массы частицы и из электродинамической массы, выражающей инерцию эфира.
Вычисления Абрагама и опыты Кауфмана показали, что механическая масса в собственном смысле равна нулю и что масса электронов — по крайней мере отрицательных электронов — имеет исключительно электродинамическое происхождение. Это вынуждает нас изменить определение массы: мы не можем уже проводить различие между массой механической и массой электродинамической, так как тогда первая исчезает. Нет иной массы, кроме массы, связанной с электродинамической инерцией. Но в таком случае масса уже не может быть постоянной, она увеличивается со скоростью; мало того, она зависит от направления, так что тело, имеющее значительную скорость, оказывает разное сопротивление силам, стремящимся отклонить его с его пути, и силам, ускоряющим или замедляющим его движение.