Меня спросят в таком случае, в чем же польза гипотезы Лоренца и Фицджеральда, если она не может быть проверена опытом? Но мое изложение не было полное, я говорил только об измерениях, которые могут быть произведены при помощи метра; но длину можно измерять и при помощи времени, которое нужно свету, чтобы ее пробежать, в предположении, что скорость света постоянна и не зависит от направления. Лоренц мог бы дать объяснение того же факта, допустив, что скорость света по направлению движения Земли больше, чем скорость света в перпендикулярном направлении. Он предпочел допустить, что скорость эта одинакова во всех направлениях, но что тела в одних направлениях обладают меньшими размерами, чем в других. Если бы поверхности световой волны испытали те же деформации, что и материальные тела, то мы не заметили бы деформации Лоренца — Фицджеральда.
Как в одном случае, так и в другом нет речи об абсолютной величине, а лишь об измерении этой величины посредством какого-нибудь инструмента; этим инструментом может быть метр или же путь, пройденный светом; мы измеряем только отношение величины к инструменту, и, если это отношение изменилось, мы никоим образом не можем узнать, что именно изменилось — измеряемая величина или инструмент.
Но я хочу лишь показать, что при деформации, о которой идет речь, мир не остался себе подобным: квадраты обратились в прямоугольники или в параллелограммы, круги — в эллипсы, сферы — в эллипсоиды. И, однако, мы ни в каком случае не можем знать, реальна ли эта деформация.
Очевидно, что в этом направлении можно было бы пойти гораздо дальше: вместо деформации Лоренца — Фицджеральда, законы которой чрезвычайно просты, мы могли бы вообразить какую-нибудь совершенно произвольную деформацию. Тела могли бы изменяться по законам, сколь угодно сложным, и мы бы этого не заметили, если бы все тела без исключения подчинялись тем-же законам. Говоря «все тела», я разумею, конечно, в том числе и наше тело и световые лучи, исходящие от разных предметов. Если бы мы рассматривали мир в одном из тех зеркал сложной формы, которые самым причудливым образом изменяют предметы, то взаимные отношения различных частей мира от этого не изменялись бы; если, в самом деле, два реальных предмета касаются друг друга, то их изображения также будут касаться друг друга. Собственно говоря, когда мы смотрим в такое зеркало, мы замечаем происшедшую деформацию, но это потому, что реальный мир существует рядом с его измененным образом, и если бы даже этот реальный мир был от нас скрыт, то все же осталось бы нечто, что от нас не было бы скрыто: это мы сами; мы не можем не видеть или по крайней мере не чувствовать нашего тела и наших членов, которые не испытали деформации и продолжают служить нам орудием измерения. Но если бы мы вообразили, что наше тело изменилось и притом стало таким, каким оно показалось бы в зеркале, то у нас исчезло бы орудие измерения, и деформация не могла бы быть обнаружена.
Вот два мира, из которых каждый является изображением другого; всякому предмету P мира A соответствует в мире B предмет Р', который и есть его изображение; координаты изображения являются определенными функциями координат предмета Р; эти функции могут, конечно, быть какими угодно; я предполагаю только, что они выбраны раз и навсегда. Между положением P и положением Р' существует постоянное соотношение; неважно, каково это соотношение; достаточно, что оно постоянное.
При таких условиях эти два мира не будут отличимы друг от друга. Я хочу сказать, что первый будет для своих обитателей тем же, чем является второй мир для своих.
И так будет до тех пор, пока два мира останутся обособленными друг от друга. Допустим, что мы обитаем в мире A, что мы построили нашу науку и, в частности, нашу геометрию. В это же время обитатели мира B также построят науку и, так как их мир есть образ нашего мира, то их геометрия будет также образом нашей геометрии, или, лучше сказать, она будет такой же, как и наша. Но если в один прекрасный день перед нами откроется окно в мир В, нас охватит чувство жалости: «несчастные, — скажем мы, — они думают, что построили геометрию, но то, что они называют этим именем, есть не что иное, как смешной и странный образ нашей геометрии, их прямые искривлены, их круги искажены буграми, их сферы усажены капризными неровностями». И мы не сомневаемся в том, что они скажут то же самое о нас, и никогда нельзя будет сказать, кто прав.