Выбрать главу

Была ли определена вероятность? И может ли она быть определена? И если нет, то как мы решаемся рассуждать о ней? Определение, — скажут, — очень просто: вероятность какого-нибудь события есть отношение числа случаев, благоприятствующих этому событию, к полному числу возможных случаев.

Простой пример даст нам понять, как неполно это определение. Я бросаю две игральные кости; какова вероятность того, что по крайней мере на одной из них выпадет 6? Каждая кость может выпасть шестью различными способами: число возможных случаев есть 6 × 6 = 36; число благоприятствующих случаев есть 11, вероятность равна 11/36.

Таково правильное решение. Но не могу ли я с таким же успехом сказать: числа очков, выпавшие на обеих костях, могут образовать (6 × 7)/2 = 21 различных комбинаций; среди этих комбинаций 6 благоприятствующих; вероятность равна 6/21.

Почему первый способ рассчитывать возможные случаи более законен, чем второй? Во всяком случае наше определение нам этого не указывает.

Таким образом, приходится дополнить это определение, говоря: «…к полному числу возможных случаев при условии, чтобы эти случаи были равновероятны». И вот мы пришли к определению вероятного при помощи вероятного же.

Как мы узнаем, что два возможных случая равновероятны? Не является ли это результатом некоторого условного соглашения? Если мы в начале каждой проблемы явно укажем условное соглашение, то все пойдет хорошо; нам придется только применять правила арифметики и алгебры, и мы доведем вычисление до конца так, что результат не оставит места никакому сомнению. Но если мы желаем сделать малейшее применение этого результата, то необходимо будет доказать, что наши условные соглашения были законны, и мы как раз натолкнемся на то затруднение, которое думали обойти.

Нам могут сказать: простого здравого смысла достаточно чтобы указать, какое соглашение следует допустить. Но вот Бертран, курьеза ради, разобрал простую задачу: «Какова вероятность того, чтобы в окружности хорда была больше стороны вписанного равностороннего треугольника?» Знаменитый геометр допустил последовательно два соглашения, одинаково, по-видимому, внушаемые здравым смыслом, и нашел в одном случае 1/2, в другом 1/3.

Заключение, которое по всей видимости вытекает из всего этого, состоит в том, что исчисление вероятностей есть наука бесполезная, что нужно с недоверием относиться к тому неясному инстинкту, который мы называем здравым смыслом и к которому обращаемся при установлении наших соглашений.

Тем не менее мы не можем подписаться под этим заключением; мы не можем обойти этот неясный инстинкт; без него наука была бы невозможна, без него мы не могли бы ни открыть закон, ни применять его. Имеем ли мы, например, право говорить о законе Ньютона? Без сомнения, многочисленные наблюдения согласуются с ним; но не есть ли это результат простой случайности? И далее, откуда мы знаем, что этот закон, верный на протяжении стольких веков, будет верным и на будущий год? На это возражение вы можете лишь ответить: «это очень маловероятно».

Но примем некий закон; я верю, что, опираясь на него, я могу вычислить положение Юпитера на целый год. Однако имею ли я на это право? Кто мне сказал, что за это время какая-нибудь гигантская масса, наделенная огромной скоростью, не пройдет вблизи Солнечной системы и не произведет непредвиденных возмущений? И здесь ничего не остается ответить, как только: «это очень маловероятно».

С этой точки зрения все науки суть только бессознательные приложения исчисления вероятностей; осудить это исчисление — значит осудить всю науку в целом.

Я не стану долго останавливаться на научных проблемах, где участие исчисления вероятностей является более очевидным.

Такова прежде всего задача интерполяции, где по известному числу значений функции стараются определить промежуточные значения. Упомяну также о знаменитой теории погрешностей наблюдений (к которой еще вернусь позднее), о кинетической теории газов — этой общеизвестной гипотезе, по которой предполагается, что каждая газовая молекула описывает крайне сложную траекторию, но где по свойству закона больших чисел явления, взятые в среднем — в форме, единственно доступной для наблюдения, — подчиняются простым законам, каковы законы Мариотта и Гей-Люссака.