Выбрать главу

Эта гипотеза может казаться довольно естественной, и Ампер ввел ее, сам того не замечая; тем не менее она не обязательна, и, как мы увидим позднее, Гельмгольц ее отбросил. Как бы то ни было, она позволила Амперу, несмотря на то, что он никогда не мог осуществить незамкнутый ток, формулировать законы действия замкнутого тока на другой, незамкнутый, или даже на элемент тока.

Законы эти по-прежнему просты:

а) сила, действующая на элемент тока, приложена к этому элементу; она перпендикулярна к элементу и к магнитной силе и пропорциональна нормальной к элементу слагающей этой магнитной силы;

б) действие замкнутого соленоида на элемент тока равно нулю.

Но в этом случае уже не существует электродинамического потенциала; т. е. если ток замкнутый и ток незамкнутый, при условии постоянства их сил, возвращаются к начальной конфигурации, то полная работа уже не будет равна нулю.

3. Непрерывные вращения. В числе электродинамических опытов наиболее курьезными являются те, в которых оказалось возможным осуществить непрерывное вращение (они иногда называются униполярной индукцией). Пусть у нас имеется магнит, могущий вращаться вокруг своей оси; ток проходит сначала по неподвижной проволоке, затем вступает в магнит через один из полюсов, проходит через половину длины магнита, выходит через скользящий контакт и возвращается в неподвижную проволоку. В этом случае магнит получает непрерывное вращательное движение, никогда не достигая положения равновесия. Этот опыт был произведен Фарадеем.

Как же это возможно? Если бы мы имели два контура неизменной формы: один неподвижный C, другой С', способный вращаться около оси, то этот последний никогда не мог бы получить непрерывное вращательное движение. В самом деле, существует электродинамический потенциал; поэтому необходимо существует положение равновесия: именно то, при котором потенциал принимает наибольшее значение.

Итак, непрерывное вращение возможно лишь в том случае, если контур C состоит из двух частей: одной неподвижной, другой, способной вращаться вокруг оси, как это имеет место в опыте Фарадея. Следует отметить еще одно различие. Переход электричества с неподвижной части на подвижную или обратно может происходить или путем простого контакта (определенная точка подвижной части находится в постоянном соприкосновении с определенной точкой неподвижной части), или при помощи скользящего контакта (одна и та же точка подвижной части последовательно приходит в соприкосновение с различными точками неподвижной части).

Только во втором случае может иметь место непрерывное вращение. Вот что здесь происходит: система стремится достичь положения равновесия; но по мере ее перемещения скользящий контакт связывает подвижную часть все с новыми точками неподвижной части; благодаря этому меняются связи, а следовательно, и условия равновесия; положение равновесия, так сказать, убегает от системы, которая стремится его настичь, и в результате вращение может продолжаться без конца.

Ампер допускает, что действие контура на подвижную часть С' будет совершенно таким же, как если бы неподвижной части C не существовало, следовательно, как если бы ток, циркулирующий в подвижной части, был незамкнутым. Отсюда он заключает, что действие замкнутого тока на ток незамкнутый (или наоборот) может повести к непрерывному вращению. Но это заключение зависит от указанной мною выше гипотезы, не принятой Гельмгольцем.

4. Взаимодействие двух незамкнутых токов. Опытов, которые относились бы к взаимодействию двух незамкнутых токов или, в частности, двух элементов тока, совершенно не существует. Ампер прибег к гипотезе. Он предположил: 1) что взаимодействие двух элементов сводится к силе, направленной по прямой, их соединяющей; 2) что взаимодействие двух замкнутых токов представляется как результирующая взаимодействий их различных элементов, причем эти взаимодействия принимаются такими же, как если бы элементы имели независимое друг от друга существование.

Замечательно, что и здесь Ампер ввел эти две гипотезы, не заметив этого. Как бы то ни было, эти гипотезы, соединенные с опытами над замкнутыми токами, достаточны для полного определения закона взаимодействия двух элементов.