В этом первоначально аморфном континууме можно вообразить сеть линий и поверхностей, затем можно условиться считать клетки этой сети равными между собой и только после такого условия этот континуум, сделавшись измеримым, становится евклидовым или неевклидовым пространством. Стало быть, из этого аморфного континуума может получиться или то или другое из двух пространств — так же, как на белом листе бумаги можно начертить либо прямую, либо круг.
В пространстве мы знаем прямолинейные треугольники, сумма углов которых равна двум прямым; но мы знаем также криволинейные треугольники, сумма углов которых меньше двух прямых. Существование одних не более сомнительно, чем существование других. Дать сторонам первых название прямых — значит принять евклидову геометрию; дать сторонам последних название прямых — значит принять неевклидову геометрию. Поэтому вопрос, какую геометрию следует принимать, равносилен вопросу: какой линии следует дать название прямой.
Очевидно, что опыт не может разрешить подобный вопрос; ведь мы, например, не обратимся к опыту за решением вопроса, как назвать прямую: АВ или CD. С другой стороны, я не могу также сказать, чтобы я не имел права дать название прямых сторонам неевклидовых треугольников, потому что они не отвечают вечной идее прямой, которой я обладаю по интуиции. Пусть я имею интуитивную идею стороны евклидова треугольника; но я также имею интуитивную идею стороны неевклидова треугольника. Почему я вправе прилагать название прямой к первой из этих идей, а не ко второй? В чем заключалось бы участие этих слогов в деле составления этой интуитивной идеи? Очевидно, когда мы говорим, что евклидова прямая есть истинная прямая и что неевклидова прямая не есть истинная прямая, мы просто хотим сказать, что первая интуитивная идея соответствует более замечательному объекту, чем вторая. Но как мы решаем, что этот объект является более замечательным? Это я исследовал в «Науке и гипотезе».
Мы видели там вмешательство опыта; если евклидова прямая более замечательна, чем неевклидова, то это прежде всего означает, что она мало отличается от некоторых замечательных естественных предметов, от которых сильно отличается неевклидова прямая. Но, скажут, определение неевклидовой прямой искусственно; попробуем на время принять его, мы увидим тогда, что два круга разных радиусов оба получат название неевклидовых прямых, тогда как относительно двух кругов одного и того же радиуса возможно, что один будет удовлетворять определению, а другой нет, и тогда, если мы перенесем одну из этих так называемых прямых, не деформируя ее, то она перестает быть прямой. Но по какому праву мы считаем равными две фигуры, которые евклидовы геометры называют двумя кругами одного и того же радиуса? Это мы считаем потому, что перенося одну из них без деформации, мы можем наложить ее на другую так, чтобы она совпала с последней. Но почему мы говорим, что это перенесение происходит без деформации? Этому невозможно дать достаточное обоснование. Среди всех постижимых движений есть такие, о которых евклидовы геометры говорят, что они не сопровождаются деформацией; но есть и другие, о которых неевклидовы геометры сказали бы, что они не сопровождаются деформацией. В первых, так называемых евклидовых движениях евклидовы прямые остаются евклидовыми прямыми, а неевклидовы прямые не остаются неевклидовыми прямыми; в движениях второго рода, или в движениях неевклидовых, неевклидовы прямые остаются неевклидовыми прямыми, а евклидовы прямые не остаются евклидовыми прямыми. Следовательно, не доказано, что было бы нелепо называть прямыми стороны неевклидовых треугольников; доказано только, что это было бы неосновательно, если бы продолжали называть движениями без деформации евклидовы движения; но так же можно было бы показать, что неосновательно было бы называть прямыми стороны евклидовых треугольников, если бы движениями без деформации назывались неевклидовы движения.
Теперь, что мы хотим сказать, когда говорим, что евклидовы движения суть истинные движения без деформации? Мы просто хотим сказать, что они более замечательны, чем другие; а почему они более замечательны? Потому что некоторые замечательные естественные тела — твердые тела — испытывают приблизительно такие движения.