Выбрать главу

Выше (§ 39) уже говорилось, что образование ковалентной связи является результатом перекрывания валентных электронных облаков взаимодействующих атомов. Но такое перекрывание возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Иначе говоря, ковалентная связь обладает направленностью.

Так, в молекуле водорода (рис. 27) перекрывание атомных s-электронных облаков происходит вблизи прямой, соединяющей ядра взаимодействующих атомов (т.е. вблизи оси связи). Образованная подобным образом ковалентная связь называется σ-связью (сигма — связь).

В образовании σ-связи могут принимать участие и р-электронные облака, ориентированные вдоль оси связи. Так, в молекуле HF (рис. 32) ковалентная σ-связь возникает вследствие перекрывания 1s-электронного облака атома водорода и 2p-электронного облака атома фтора. Химическая связь в молекуле F2 (рис. 33) — тоже σ-связь; она образована 2р-электронными облаками двух атомов фтора.

При взаимодействии р-электроннх облаков, ориентированных перпендикулярно оси связи (рис. 34), образуется не одна, а две области перекрывания, расположенные по обе стороны от этой оси. Такая ковалентная связь называется π-связью (пи-связь).

Рис. 32. Схема перекрывания 2p-электронного облака атома фтора и 1s-электронного облака атома водорода при образовании  σ-связи в молекуле HF

+ и — знаки волновой функции.

Рис. 33. Схема перекрывания 2р-электронных облаков атомов фтора при образовании σ-связи в молекуле F2.

Рис. 34. Схема перекрывания р-электронных облаков при образовании π-связи.

- 128 -

Рассмотрим образование молекулы азота N2. Каждый атом азота обладает тремя неспаренными 2р-электронами, электронные облака которых ориентированы в трех взаимно перпендикулярных направлениях.

На рис. 35 изображено перекрывание р-электронных облаков в молекуле N2 (для удобства изображения перекрывание px- py- pz -облаков показано раздельно). Как показывает рис. 35, атомы азота связаны в молекуле N2 тремя ковалентными связями. Но эти связи неравноценны: одна из них σ-связь, а две другие π-связи. Вывод о неравноценности связей в молекуле азота подтверждается тем, что энергия их разрыва различна.

Рис. 35. Схема перекрывания 2р-электронных облаков в молекуле N2;

а -  σ-связь; б и в — π-связи.

Представление о направленности ковалентных связей позволяет объяснить взаимное расположение атомов в многоатомных молекулах. Так, при образовании молекулы воды электронные облака двух неспаренных 2р-электронов атома кислорода; перекрываются с 1s-электроными облаками двух атомов водорода; схема этого перекрывания изображена на рис. 36. Поскольку р-электронные облака атома кислорода ориентированы во взаимно перпендикулярных направлениях, то молекула H2O имеет, как показано на рис. 36, угловое строение, причем можно ожидать, что угол между связями O-H будет составлять 90˚.

Молекула NH3, образующаяся при взаимодействии трех р-электронов атома азота с s-электронами трех атомов водорода (рис. 37), имеет структуру пирамиды, в вершине которой находится атом азота, а в вершинах основания атомы водорода. И в этом случае можно ожидать, что углы между связями N-H будут равны 90˚.

Рис. 36. Схема образования химических связей в молекуле воды.

- 129 -

Рис. 37. Схема образования химических связей в молекуле аммиака.

Эти выводы о взаимном расположении атомов в молекулах NH3 и  H2O соответствуют действительности. Значительная полярность молекул воды (μ =1,84 D) и аммиака (μ =1,48 D), а также данные структурных исследований свидетельствуют о том, что молекула  H2O имеет угловое строение, а молекула NH3 построена в форме пирамиды. Однако углы между связями (валентные углы) отличаются от 90˚: в молекуле воды угол HOH составляет 104,5˚, а в молекуле аммиака угол HNH равен 107,3˚.