Молекулы и атомы твердого тела, и метеора в том числе, часто расположены в некотором определенном порядке, образуя так называемую кристаллическую решетку. С чудовищной скоростью метеор врезается в воздух, и молекулы, из которых состоит воздух, с силой втискиваются в молекулярную решетку метеорного тела. Чем дальше влетает метеор в земную атмосферу, тем плотнее там воздух и тем больше и больше молекулярная решетка метеорного тела подвергается ожесточенной бомбардировке молекулами воздуха.
Лобовая часть метеора в конце концов получает ливень таких ударов, при которых молекулы воздуха вонзаются в метеор, проникают внутрь него, как снаряд в железобетонный дот. Этот «обстрел» передней поверхности нарушает связи между молекулами и атомами тела, ломает кристаллические решетки и вырывает из них отдельные молекулы вещества метеора, накапливающиеся уже в беспорядке на его лобовой поверхности. Часть молекул расщепляется на атомы, из которых они состоят. Некоторые атомы от ударов даже теряют входящие в их состав электроны, т. е. ионизуются, приобретая электрический заряд. Отколотые электроны, время от времени скользя слишком близко к ионам, захватываются ими на «вакантные места» и при этом, в соответствии с законами физики, излучают свет. Каждый атом излучает свои длины волн, отчего спектр метеора и есть ярко-линейчатый спектр, характерный для свечения разреженных газов.
Чем глубже в атмосферу, тем быстрее идет разрушение метеора и сильнее его свечение. На высоте ниже 130 км над Землей оно уже достаточно, чтобы сделать метеор видимым для нас.
Молекулы воздуха тоже страдают при ударах, но они прочнее молекул и атомов метеора и реже ионизуются, кроме того, они не так сильно сконцентрированы и потому дают столь слабое свечение, что линии газов, составляющих атмосферу (в основном кислорода и азота), мы в спектре метеора не замечаем.
Ниже в атмосфере воздух перед лобовой поверхностью метеора образует «шапку», состоящую из сжатых газов, в которые превращается метеор, и отчасти - из газов сжимаемого им перед собою воздуха. Струи сжатого и горячего газа обтекают метеорное тело с боков, отрывая от него новые частицы и ускоряя разрушение камешка.
Более крупные метеорные тела проникают глубоко в атмосферу, не успев целиком превратиться в газ. Для них торможение приводит к потере их космической скорости на высоте 20-25 км. Из этой «точки задержки», как ее называют, они падают уже почти отвесно, как бомбы с пикирующего самолета.
В низких слоях атмосферы обилие твердых частиц, сорванных с боков метеорного тела и отставших от него, образует за ним «дымный» черный или белый пылевой след, часто видимый при полете ярких болидов. Когда такое тело достаточно велико, то в разрежение, образующееся за ним, устремляется воздух. Это, а также сжатие и разрежение воздуха на пути большого метеорного тела вызывают звуковые волны. Поэтому полет ярких болидов сопровождается звуками, похожими иногда на выстрелы и на раскаты грома.
Как яркость, так и цвет метеоров и болидов создается не накаливающейся твердой поверхностью, которая ничтожно мала, а частицами вещества, обращенными в газ. Поэтому цвет их зависит не столько от температуры, сколько от того, какие из светлых линий в его видимом спектре являются наиболее яркими. Последнее зависит от химического состава тела и от условий его свечения, определяемых его скоростью. В общем все-таки красноватый цвет сопровождает меньшую скорость движения.
Такова в кратких чертах картина свечения метеорных тел в атмосфере, которую рисует современная наука.
Остановимся на некоторых подробностях этих явлений, изученных совсем недавно и связанных с изучением стратосферы. Например, исследование торможения метеоров проливает свет на изменения плотности воздуха с высотой. Чем больше плотность воздуха, тем сильнее, конечно, торможение, но торможение зависит и от скорости движения и от формы тела, отчего самолетам, автомобилям и даже локомотивам стремятся придать «обтекаемую форму». Тело «обтекаемой» формы лишено острых углов и рассчитано так, чтобы при быстром движении воздух обтекал его, встречая как можно меньше помех, сопротивления, и потому меньше тормозил движение.
Артиллерийские снаряды испытывают в полете огромное сопротивление воздуха. Метеорные же тела летят в воздухе со скоростью, в десятки раз превышающей скорость снаряда, и для них сопротивление воздуха еще больше. По снимку метеора, полученному однажды в Москве любителями астрономии, членами Астрономо-геодезического общества, фотокамерой с сектором, вращающимся перед объективом, для одного метеора нашли торможение (которое часто называют отрицательным ускорением) около 40 км/сек2. Это в 400 раз превосходит ускорение свободного падения тел под действием силы тяжести! И это на высоте 40 км над Землей, где воздух так разрежен, что человек там немедленно погиб бы от удушья.