Выбрать главу

Что ж, теперь, когда мы немного познакомились с квантовой механикой, это не должно вызывать у нас особого удивления. Помните волну вероятности? Она же, строго говоря, не имеет в пространстве ни начала, ни конца — на то она и волна! Но зато, с другой стороны, она не одинаково сильна: облачко, которым теперь представляется частица, в одних местах очень густое, а во всех остальных — почти совершенно прозрачное. Что-то вроде клуба дыма.

Понятно, что чем больше вероятность пребывания частицы в таком-то месте, тем гуще в этом месте «дым». Поэтому физики чисто условно провели границу частицы там, где облачко становилось практически совершенно прозрачным.

Таким «дымовым клубом» физики представили и ядро. И оказалось при этом, что «клубы» протонных облаков, очень крошечные, хорошо укладывались в размеры (конечно, условные) ядра. Тогда как электронные облака расползались чуть ли не по всему атому, имеющему в тысячи раз бóльшие размеры.

Да, электроны явно не умещались в ядрах! Как же быть? И физики после долгих размышлений лишили электрон пристанища в ядре.

Но это было лишь полдела. Ядро продолжало себе спокойно жить и не разлетаться на кусочки даже без электронов. Какая-то пока неведомая причина не только удерживала от разлета бешено враждующие протоны (на таких малых расстояниях, как в ядре, сила их электрического взаимного отталкивания колоссальна!), эта причина сплачивала протоны в такие поразительно прочные коллективы, что их никакое усилие не брало. Было над чем ломать голову!

А что же квантовая механика? Чем она скрепила ею же «разрушенные» ядра?

Да ничем. Она сама пока не может сказать ничего положительного. Молчат теоретики. Слово за экспериментаторами.

Ядерные артиллеристы

А те пока безмолвствуют. Но они работают. Работают усерднее, чем когда-либо.

Если бы в начале тридцатых годов мы с вами заглянули в одну из немногочисленных в то время лабораторий ядерной физики, нам бы представилась картина, совсем не похожая на ту, что была в начале века.

За каких-нибудь тридцать лет эти лаборатории неузнаваемо изменились. Вместо крошечных клетушек — большие помещения, неуютные, холодные — почти что сараи. Около огромных колонн хлопочут люди. На верху колонн смутно поблескивают большие шары. Провода от них тянутся вниз, к длинной трубе, около которой деловито стучат насосы.

Вся установка имеет какой-то марсианский вид. Но она — вполне земное изобретение. Это первый ускоритель заряженных частиц, изобретенный голландским ученым Альбертом Ван-де-Граафом.

Ускоритель Ван-де-Граафа. В высокой полой трубе движется лента, накапливает электрический заряд и передает на электрод ускорительной камеры высокое, до нескольких миллионов вольт, напряжение. (Вам будет интересно узнать, что, прогуливаясь по ковру, вы тоже представляете собой как бы маленький Ван-де-Граафов генератор: разность потенциалов между вами и землей может дойти до десятков тысяч вольт!) Под действием миллионовольтного напряжения электроны в ускорительной камере набирают почти околосветовую скорость. Протоны в такой камере тоже набирают скорость порядка десятка тысяч километров в секунду.

Физики тех лет вряд ли знакомы с Мичуриным. Но на их знамени — тот же известный мичуринский девиз: «Не ждать милостей у природы!»

Не ждать, пока редчайшая частица космических лучей влетит в ядро и расщепит его, да еще так, как это нужно ученым. Не ждать, пока тоже редкая альфа-частица из препарата радия натолкнется на ядро. Самим создавать мощные и быстрые потоки ядерных частиц!

Но сделать это совсем не просто. Прежде всего, какие частицы взять? Электроны? Можно. Но недолгий опыт уже показывает, что расщепление ядра электронами не вызвать. Это, кстати, еще одно свидетельство того, что в ядре электронов нет. Выбитый из ядра электрон сделал бы ядро неустойчивым. Оно должно было бы избавиться тогда от ставшего лишним протона. Однако этого никто никогда не замечал.

Значит, не электрон. Взять альфа-частицы, как это делал отец ядерной физики Резерфорд? Не очень удобно: альфа-частицы несут двойной электрический заряд, а значит, довольно сильно отталкиваются ядрами, у которых заряд имеет тот же знак. Да к тому же это составные частицы. Вылетит из ядра частица — и надо соображать, кому же она принадлежала: альфа-частице или ядру?