Так как йод в незначительных количествах встречается почти повсеместно, то сравнительно чаще, чем полный кретинизм, встречаются расстройства организма, связанные лишь с недостаточным поступлением йода в организм. Наиболее часто такие расстройства проявляются в развитии зоба, большой обезображивающей опухоли на шее.
Из обычных продуктов питания наиболее богаты йодом лук и морская рыба. Ежедневное потребление небольших доз йодистых солей (в виде примесей к поваренной соли) позволяет полностью избавиться от «зоба». В Китае больных зобом лечили золой морских губок (которая содержит до 8,5 % йода) еще очень давно. При добавлении в пищу йодсодержащих водорослей у коров увеличивается удой молока, а у овец быстро растет шерсть. Отмечено также благотворное влияние небольших доз йодистых соединений на яйценосность кур, откорм свиней.
В настоящее время известно несколько искусственных радиоактивных изотопов йода с массовыми числами 125, 128, 130, 131, 132, 133 и 135. Наибольшее значение в практическом отношении имеет радиоактивный изотоп 131, сравнительно недавно стали также использоваться и радиоактивные изотопы 132 и 133. Изотоп йода-131 был выделен в 1938 г. Ливингудом и Сиборгом из теллура, облученного нейтронами и дейтронами. Затем он был обнаружен Абельсоном в продуктах деления урана и, наконец, в продуктах деления тория-232.
Изотоп йода является бета- и гамма-излучателем с периодом полураспада 8 дней.
Наиболее широкое применение получил изотоп йода-131 в медицине, где его применяют для определения функции щитовидной железы, а также для лечения ряда ее заболеваний (гипертиреоза, злокачественных новообразований и др.). Способность некоторых веществ, содержащих йод, накапливаться в опухолевых тканях, нашла себе применение в использовании таких веществ с радиоактивными изотопами йода для точного определения местоположений опухолей в мозгу.
У йода только один устойчивый изотоп, которому обязаны все известные соединения, в том числе и гормон. Попробуйте представить, что произошло бы в случае нарушения устойчивости некоторых элементов, например йода.
Медицина — главная область применения устойчивого изотопа йода, где он используется для лечения зоба, для предупреждения атеросклероза и при лечении ряда болезней внутренних органов и нервной системы. Это главная, но не единственная область его применения.
Главными потребителями йода являются фармацевтическая, химическая промышленность и производство светочувствительных фотоматериалов.
Один из «благородных»
Понадобилось полтора года и огромное количество жидкого воздуха, чтобы выделить еще один инертный газ, существование которого в воздухе было уже несомненным. Переработав почти сто тонн воздуха, т. е. 77,4 млн. л, Рамзай получил 300 см3 нового газа. Несколько раньше он имел менее 0,2 см3, этого количества было достаточно для спектрального анализа и установления индивидуальности нового элемента.
Трудно себе представить возможность применения этого элемента, если учесть, что для получения одного литра ксенона необходимо переработать миллионы литров воздуха. В 1 м3 воздуха содержится 0,08 мл ксенона. Лабораторные испытания показали несомненные преимущества ксенона перед всеми другими инертными газами для наполнения электроламп.
Если бы огромные количества воздуха приходилось перерабатывать исключительно ради ксенона, возможность его применения можно было бы считать сомнительной из-за дороговизны. Положение упрощается тем, что ксенон получают в качестве побочного продукта при разгонке воздуха. Уже появились газоразрядные лампы, наполненные ксеноном, правда, мощность таких ламп пока не превышает одного киловатта.
В химическом отношении ксенон, как и другие инертные газы, совершенно инертен, «благороден», как определили его в начале XX в. Он не реагирует ни с одним веществом или элементом.
Свое название ксенон получил от греческого слова «ксенос», что означает «гость», «чужой», «посторонний».
Замечательной особенностью ксенона является его способность поглощать рентгеновские лучи. Эта способность при полном отсутствии ядовитости могла бы прекрасно использоваться в медицине для введения ксенона в организм при рентгеновских исследованиях внутренних органов. Однако отсутствие запасов ксенона исключает эту возможность.
Попытки отыскания еще каких-либо новых инертных, постоянно присутствующих в воздухе газов не дали положительных результатов. Последней по времени попыткой такого рода были исследования английского физика Ф. Астона, который, закончив в мае 1923 г. испарение 400 т жидкого воздуха, не нашел в них следов новых инертных газов. Ничтожные количества радиоактивного радона, присутствующего в воздухе при этом, конечно, не могли быть обнаружены.