Выбрать главу

Природа так щедро одарила иммунологию талантами в конце XIX — начале XX в., что, казалось, дальше она несколько десятилетий отдыхала. Вторая волна иммунологических идей и дерзаний возникла уже после того, как на повестку дня выдвинулись потребности хирургии в пересадке тканей. Так же как первую историческую страницу иммунологии мы вправе называть инфекционной, вторая страница имеет основания считаться трансплантационной как по сути исследуемых вопросов, так и по побудительной причине.

Зоолог Питер Медавар, получивший образование в Оксфордском университете, был выходцем из Бразилии. Позже королева Великобритании пожаловала Медавару, ставшему к тому времени лауреатом Нобелевской премии, почетное звание "сэра", но во время войны Медавара занимали вопросы пересадки кожи обожженным английским летчикам. Проведя серию экспериментальных наблюдений, в 1944 г. в статье "Поведение и судьба кожных трансплантатов у кроликов" Медавар сформулировал вывод, который стал ведущим для всех последующих поисков: "Механизм, посредством которого элиминируется чужеродная кожа, принадлежит к общей категории активно приобретенных иммунных реакций".

Наблюдения были сделаны на людях, проверочные опыты — на кроликах, но можно думать, что решающие эксперименты заняли бы еще не одно десятилетие, если бы к "столу" иммунологов не подоспело бы "лакомое блюдо". В 20-х годах генетики начали выведение специальных пород мышей, которые получили название чистых, или инбредных линий (от англ. Inbreeding — родственное спаривание). Смысл его заключался в получении абсолютно тождественных в генетическом отношении организмов, таких, как однояйцевые близнецы. Техника состояла в получении потомства от однопометных братьев и сестер (в полном смысле единокровные браки, поэтому для защиты потомства принимались специальные мероприятия). Для получения чистой линии, т. е. одинакового состава хромосом у всех животных данной породы, нужно было провести около 90 последовательных скрещиваний брат — сестра, брат — сестра и т. д.

Можно себе представить, какой срок заняло бы выведение чистых линий крупных и долгоживущих лабораторных животных. Но у мышей беременность длится три недели, в трехмесячном возрасте их уже можно скрещивать, то есть получать по три поколения в году; следовательно, работа по выведению инбредных линий мышей заняла всего... 30 лет.

Рис. 14. Схема состояния чужеродного кожного трансплантата через 10 дней после пересадки от мыши линии А. У реципиента линии А он прижился, у реципиента линии Б (отличие по одному Н-антигену) он частично прижился, у реципиента линии В (различие по многим Н-антигенам) он разрушился

Но зато какие удивительные возможности предоставил такой мир искусственных животных иммунологам! Мыши одной линии отличались от мышей другой линии по строго вычисленным участкам хромосомы и, следовательно, антигенам — по одному, двум, четырем, по слабым и сильным антигенам тканевой совместимости, по одному только сексуальному антигену (связанному с полом, т. е. имеющемуся у самцов и отсутствующему у самок). Во второй половине 40-х годов инбредные мыши стали "Пегасом" трансплантационных иммунологов, а эксперимент, возведенный до высот математической точности, родил биологические законы трансплантации.

Оказалось, что различия по одному-единственному антигену тканевой совместимости (у мышей они определяются Н-локусом от англ. Histcompatibility) достаточно, чтобы донорская кожа не прижилась у реципиента. Однако в одних случаях такое минимальное различие ведет к разрушению трансплантата через 20-25 дней, в других — через 8-10 суток. Именно поэтому белки первого порядка, вызывающие замедленную ответную реакцию реципиента, были названы слабыми антигенами тканевой совместимости, а белки второго порядка — сильными антигенами. Законы пересадки на линейных мышах были сформулированы первыми представителями новой дисциплины — иммуногенетики П. Горером и Г. Снеллом. Они в равной мере относились как к трансплантации кожи, так и к искусственной перевивке опухолевых тканей, несущих все те же Н-антигены (рис. 14).