Выбрать главу
Так сколько же измерений?

Профессор Джозеф Силк из Оксфорда считает, что Вселенная насчитывает 6 пространственных измерений. То есть в ней существует 3 привычных, данных нам в ощущениях, и еще 3 дополнительных измерения, которые мы не замечаем.

При всей фантастичности этой версии профессор Силк предлагает вариант дополнительных измерений пространства. Набирающая в последнее время вес парадоксальная теория суперструн предлагает еще большее число дополнительных измерений — 8.

Каково бы ни было число дополнительных измерений, сам факт их существования выводится из обнаружения темной материи. Лишь 3–5 % Вселенной — доступная нам материя из протонов, электронов, нейтронов. 25 % — частицы неизвестной природы. 70 % Вселенной составляет темная энергия с положительной плотностью и отрицательным давлением. Загадочная темная материя, которая состоит из частиц тяжелее протона, невидима для нас, но фиксируется через гравитационное проявление.

Группа ученых из Оксфорда проанализировала поведение темной материи в маленьких галактиках и в массивных галактических скоплениях. Выяснилось, что в меньших объектах темная материя притягивает к себе вещество, но в больших такого воздействия почему-то нет, хотя темная материя должна присутствовать там в больших количествах, о чем говорит анализ вращения объектов.

Профессор Силк предполагает, что на расстояниях порядка нанометра (одна миллиардная метра) три дополнительных пространственных измерения искажают гравитационные эффекты и влияют на взаимодействие темной материи с другим веществом. Но в крупных галактических группах частицы темной материи движутся с более высокими скоростями, чем в карликовых галактиках, и находятся дальше друг от друга, что делает незначительным эффект трех дополнительных измерений.

СНОВА О ТЕОРИИ СУПЕРСТРУН

Что касается теории суперструн, которая предсказывает существование восьми дополнительных измерений пространства, то она снимает несколько противоречий теории относительности, которые видел, но не смог разрешить сам Эйнштейн. Теория суперструн предсказывает существование новой частицы — гравитона (вроде светового фотона), которая помогает понять механизм действия гравитации.

До сих пор скорость, с которой действует сила тяжести, измерить никому не удавалось. Скорость электромагнитного взаимодействия мы можем измерить, а скорость гравитации — никак.

По теории Ньютона, если бы Солнце внезапно исчезло из центра Солнечной системы, то Земля мгновенно устремилась бы в дальний космос. По теории Эйнштейна, при равенстве скорости света и скорости гравитации Земля оставалась бы на орбите еще в течение 500 секунд — ровно столько времени требуется свету и гравитации, чтобы преодолеть расстояние от Солнца до Земли.

Во Вселенной с гравитонами число измерений больше, чем в привычном мире. Но эти восемь новых измерений свернуты в круг, и «нырнуть» в них очень сложно. По крайней мере, мы из своего трехмерного мира увидеть то, что происходит в 11-мерном мире, никак не можем. Как тень не может увидеть своего хозяина. Но гравитация и гравитоны действуют напрямую именно через эти дополнительные измерения пространства.

Что касается скорости гравитации, в теории суперструн гравитация через дополнительные и свернутые в круг измерения распространяется быстрее света, но принципы теории относительности при этом не нарушаются.

ТЕОРИЯ

Что такое теория суперструн? И почему струны? Что это — экстравагантная идея или новый вид материи? Существуют ли другие подходы к построению полной картины фундаментальных законов физики?

В этой интересной теме работают многие современные физики-теоретики, математики, астрофизики, в том числе академик Валерий Рубаков и доктор физико-математических наук Дмитрий Гальцов.

Математическая структура теории начинает играть значительную роль по мере продвижения в область все более фундаментальных и все менее непосредственно наблюдаемых явлений. Появился даже термин — суперструнная революция.

Попытки построить теорию, которая обобщала бы все, что известно о мире, делаются регулярно, однако они обречены на незавершенность. Такая теория все равно будет не совсем общей — она лишь обобщит наши знания на сегодняшнем этапе.

За обобщение электрического и слабого взаимодействия была присуждена Нобелевская премия 1979 года (теория Вайнберга — Салама). Вероятно, должно обобщаться и треть, е взаимодействие — ядерное (сильное), заодно следует ожидать, что обобщается и четвертое.

Когда говорят о фундаментальной теории, подразумевают квантовую теорию, описываемую уравнениями квантовой механики. Но уравнения, описывающие гравитационное поле (четвертое взаимодействие), — классические, не квантовые. Они приближаются к истинным квантовым уравнениям и перестают работать на очень маленьких расстояниях и очень больших энергиях.