Выбрать главу

Когда организм зашлакован при различных болезнях легких, курении и т. п. (при которых вместо оксигемоглобина образуется карбоксигемоглобин, фактически блокирующий весь дыхательный процесс), кровь не только не очищается и не подпитывается необходимым кислородом, но и возвращается в таком виде к тканям, и так задыхающимся от недостатка кислорода. Круг замыкается, и где произойдет поломка системы — дело случая.

С другой стороны, чем ближе к Природе пища (растительная), подвергнутая лишь незначительной термической обработке, тем больше находится в ней кислорода, освобождаемого при биохимических реакциях. Хорошо питаться — это не значит переедать и все продукты сваливать в кучу. В жареных, консервированных продуктах кислорода вообще нет, такой продукт становится «мертвым», а потому для его обработки требуется еще большее количество кислорода.

Но это только одна сторона проблемы.

Работа нашего организма начинается с его структурной единицы — клетки, где есть все необходимое для жизнедеятельности: переработки и потребления продуктов, превращения веществ в энергию, выделения отработанных веществ. Однако процесс получения энергии и использование ее в клетке продолжает рассматриваться современной наукой с точки зрения химических законов, согласно которым скорость протекающих реакций не должна превышать 1х106 с. Последнее означает, что в живой клетке не может быть квантовых взаимоотношений, протекающих с огромными скоростями. Вместе с тем имеется много данных, что процессы биоокисления у нас заканчиваются не образованием аденозинтрифосфорной кислоты (АТФ), а возникновением высокочастотного электромагнитного поля и ионизированного протонного излучения.

Оригинальное мнение по этому поводу с точки зрения биофизических процессов, происходящих в организме, высказал блестящий хирург Божьей милостью Георгий Николаевич Петракович. Как он доказал, клетка способна даже вырабатывать кислород и энергию за счет свободнорадикального окисления насыщенных жирных кислот. Но для этого она должна получить энергетическое возбуждение, которое обеспечивается эритроцитами крови.

Известно, что молекула эритроцита имеет отрицательный заряд. Вырабатываемый в процессе биоэнергетической реакции в мембране эритроцита электрон захватывает входящий в состав гемоглобина атом железа — в этом причина того, что в циркулирующей крови железо всегда двухвалентно. Другая часть «наработанных» электронов расходуется на заряд всего эритроцита. Величина эт. их зарядов у разных эритроцитов разная в зависимости от их возраста и нормального состояния. Удивительно, что имеющий диаметр в три-четыре раза больше капилляра, эритроцит все-таки проходит по нему. Дело в следующем.

Под давлением крови в капиллярах, как в очереди, собираются «монетные столбики» (под микроскопом они действительно напоминают сложенные столбиками монетки) эритроцитов. Так как они имеют форму двояковогнутой линзы, то в пространстве между ними в легких находится жировоздушная смесь, а в клетках — кислородно-жировая пленка. В аэробных (кислородных) условиях свободнорадикальное окисление насыщенных жирных кислот клеточных мембран происходит как обычное горение, в результате чего образуется вода, углекислый газ и тепло. Помимо этого, в анаэробных условиях (недостаток кислорода) здесь же происходит реакция с образованием кетоновых тел (ацетон, альдегиды), спиртов, в том числе этилового, происходит омыление жиров поверхностно-активных веществ, так называемых сурфактантов.

Так вот, при создании давления в капиллярах между эритроцитами происходит взрыв-вспышка, как в двигателе внутреннего сгорания. Свечой здесь служит атом железа, переходящий из двухвалентного в трехвалентный, а если учесть, что в состав одной молекулы гемоглобина входит только 4 атома железа, а их в одном эритроците около 400 миллионов, то можете себе представить, какова сила взрыва. Но это не приносит вреда, так как все происходит на молекулярном, атомарном уровне и в малом пространстве.

Физики доказали: на движущуюся в электромагнитном поле заряженную частицу действует сила Лоренца, которая закручивает траекторию движения, в частности эритроцита, расширяя при этом микрокапилляры и заставляя его протискиваться в отверстие, которое в три-четыре раза меньше самого эритроцита.