Так что даже полукилобайтная ЦМДшка будет как нельзя кстати — две тысячи таких устройств смогут хранить мегабайт информации, со временем доступа на порядок лучше, чем наши жесткие диски, да и в производстве они кажутся проще — им не требуется высокоточная механика перемещения головок чтения-записи. По дискам, конечно, я ожидал дальнейшего прогресса, но и ЦМД скорее всего не будут стоять на месте — разработчики говорили о плотности записи в сотню бит на миллиметр, то есть схема площадью в один квадратный сантиметр сможет хранить чуть ли не десять килобайт. И это только начало. В общем, нас ждет соревнование технологий — в группе магнитных средств хранения уже образовывались свои лагеря, и не только в разрезе "винтовики"-"ЦМДшники" — уже и последние начинали почковаться — группа из шести человек изучала намагничивание при локальном нагреве. Да, вот им лазеры точно не помешают. Но я их пока придерживал — и так поток новых сведений и технологий зашкаливал — я просто не успевал отслеживать вал сообщений об исследованиях и открытиях, а ведь требовалось по каждому определить перспективность, да и секретность — если по ядерным исследованиям и циклотронам темы были закрыты для широкой публики, то вот по ЦМД — закрывать или нет? Непонятно. А тут уже и химики загорелись "поерзать" по поверхностям веществами, запертыми в таких доменах — что-то типа микрореакторов. Причем они узнали о ЦМД даже не через бюллетень, а в обычной столовке — там зарождалась супружеская пара, вот они и обедали компаниями, а заодно рассказывали о своих работах. Запретить? Или фиг с ними? Все-равно сливки мы снимем… надо думать.
А с фоторезисторами, пожалуй, мы пока определились — вакуум, и только вакуум. Чем нам была привлекательна технология вакуумных фоторезисторов — на стабилизацию параметров фотоэлемента требовалось не более суток — за это время фоточувствительная пленка приходила в равновесное состояние, отдав или наоборот приняв нужное ей для нормальной работы количество кислорода. Причем мы уже научились корректировать параметры получавшихся фотоэлементов в процессе их изготовления — после осаждения и отжига мы ввели этап корректировки параметров, когда по измеренному сопротивлению фоторезистора, по его откликам на облучение светом, мы изменяли состав газовой атмосферы в баллоне — добавляли серу или кислород, а то и испаряли внутрь свинец, чтобы уменьшить дырочную проводимость и тем самым повысить быстродействие — и, выдерживая элемент при определенной температуре, подгоняли сопротивление до нужного значения, и только потом отпаивали его от вакуумной системы, которая по сути стала не просто вакуумной, а системой с управляемой атмосферой. Да, это увеличило время изготовления почти на два часа и пока требовало ручной работы техника — для автоматизации еще не было наработано достаточно данных, чтобы выстраивать формализованные зависимости между текущими параметрами и вариантами воздействия. Зато выход годных приборов только за счет этой процедуры повысился до семидесяти процентов, так что при том же объеме аппаратуры мы производили даже больше элементов, чем до введения этого этапа корректировки. Более того, управляемая атмосфера стеклянной колбы позволяла восстанавливать работоспособность фотоэлементов — заморозкой или разогревом мы могли изменить содержание кислорода в поликристаллической пленке и тем самым вернуть ее характеристики близко к номинальным.
Сама пленка тоже получалась довольно однородной, тогда как в тех же "мокрых" фоторезисторах однородность была гораздо меньше — тут сказывался и сам факт осаждения из раствора, и необходимость осаждения в несколько слоев, иначе влага выходила бы из пленки недопустимо долгое время. Правда, к лету сорок третьего эта технология уже достаточно продвинулась — ведь полтора года исследователи только и делали, что изучали закономерности осаждения пленок из растворов. Начнут реакцию, тут же ее прекратят — и смотрят в микроскоп — где там начали появляться центры кристаллизации? Как из них растут кристаллиты? А если повысить температуру на пару градусов — не появится ли больше центров кристаллизации, соответственно, не получится ли пенка более однородной? А если добавить, например, медный купорос — не сработают ли его кристаллики зародышами? Ведь он выпадет раньше, так как его растворимость при такой температуре будет меньше. Ну и так далее — по части изучения закономерностей роста пленок мы очень неплохо продвинулись за это время, в том числе научились легировать осаждаемую пленку так, чтобы она сразу имела дырочную проводимость. Ведь химически осажденные пленки, если с ними ничего не делать, имеют электронный тип проводимости — в них осаждается немного больше свинца. Совсем чуть-чуть. Но это и делало их нефоточувствительными — дополнительные электроны, выбитые светом, практически никак не изменяли проводимость элемента, соответственно, это изменение не могли отследить и внешние цепи, в которые он был включен. Дырочная же проводимость как раз резко реагировала на дополнительных электроны — изначально их было мало, поэтому сопротивление элемента было велико — ток без облучения, то есть темновой ток, был невелик. А вакуумная технология позволяла тонко контролировать состав пленки — добавишь чуть больше серы в исходные вещества — и сразу получаешь дырочную проводимость, требуется уже меньше кислорода, причем впоследствии мы заметили, что если делать пленки с высоким сопротивлением, то они деградируют гораздо медленнее, а вот те же химические пленки меняли свои параметры очень долго — собственно, этим и была вызвана необходимость их выдержки почти год. Ну, если не хотим калибровать приборы чуть ли не каждый день. Но поначалу и такие элементы шли на ура — лучше тратить на калибровку пару часов в день, чем вообще не иметь таких замечательных "глаз".