Выбрать главу

А попутно автоматизировали и процессы тестирования транзисторов, и установку шаблонов. И все - на базе дифракционных решеток - с их помощью и измеряли перемещения, и ставили метки, по которым выравнивали инструменты относительно подложки и подложки относительно шаблонов. А то подводить тестеры вручную, опускать иголки, подавать напряжение - и так для каждого транзистора - было очень муторным делом, на проверку одной пластины - всех ее тысяч транзисторов - уходило до двух недель, благо что учеников хватало и их надо было тренировать в точном позиционировании - вот они и портили глаза, следя в окуляры микроскопов за перемещением дифракционных полос и углублениями в поверхности пластины. Уже на третий день они сами и разработали схему перемещений, которая могла отслеживать положение щупа, так что теперь оставалось только сориентировать саму пластину, выставить ноль, а дальше можно было вращать рукоятки подачи и схема сама считала импульсы от пробегающих полос, по ним вычисляла положение щупов и даже отображала координаты на круговых индикаторах. Собственно, ученики просто взяли оборудование от проекционных станков. Ну а дальше она развивалась - сбоку прикрутили сначала простенькую управляющую схему, которая считывала с перфоленты координаты очередного транзистора, подводила к нему щупы, подавала отпирающее и затем запирающее напряжения и считывала выходной сигнал - реагирует ли транзистор на вход или же вместо нормальной работы стабильно выдает один и тот же результат. Проверка транзисторов существенно ускорилась - вместо двух недель пластину можно было просканировать за сутки, и на выходе получали длинную битовую маску, которая содержала результаты тестирования всех транзисторов - и уже ее разбивали на группы. Попытки поставить матрицу щупов сначала натолкнулись на тепловые деформации - они слегка раздвигали держатели иголок, так что те переставали опускаться на места, где были выходы транзисторов - просто промахивались, а то и попадали в соседей. Пришлось встраивать в многопозиционный щуп отдельные дифракционные решетки, с помощью которых измерялась тепловая деформация, а для ее компенсации добавили пьезоэлементы, которыми можно было отжать ушедшие иголки обратно. В итоге площадка размером пять на пять сантиметров содержала двадцать пять трехэлектродных щупов, пять пар дифракционных решеток и шестнадцать пьезоэлементов - и с ее помощью за одно "прицеливание" можно было оттестировать сетку сразу из двадцати пяти транзисторов, расположенных на соседних микросхемах - решетка сканировала "сетку" транзисторов, затем сдвигалась на один транзистор к следующей "сетке" и так далее, пока не досканировала всю линейку, затем сдвигалась на один транзистор вправо и снова сканировала сетки со сдвигом уже назад - в обратном направлении. Затем следующий ряд, следующий - на сканирование одной пластины уходило уже три часа.

По сравнению с этой микромашинерией автоматическая установка шаблонов была плевым делом - там и требовалось-то взять кассету с шаблоном, воткнуть ее в щель аппарата и затем подвигать-повертеть, чтобы совпали фигуры ориентации, что находились как на стекле проекционного аппарата, так и на шаблоне. Правда, сами фигуры пришлось переделать под машинный поиск - если до этого оператор вполне мог определить все эти кресты и косые линии, что должны были уместиться друг в друге, то машина пока не умела распознавать сложные фигуры, поэтому их заменили на наборы небольших прямоугольников, и если они переставали пропускать свет через микроскоп на матрицы фотоэлементов, значит - шаблон установлен ровно. Разве что на каждый "квадрат" пришлось все-таки ставить по четыре фотоэлемента и маскировать их входными отверстиями, чтобы определить - а куда собственно надо двигать шаблон, чтобы его квадраты перекрыли отверстия. В итоге, хотя поначалу и пытались решить проблему схемой на жесткой логике, но в конце концов поставили нормальную ЭВМ, которая и решала эти задачи - слишком сложным получались алгоритмы - там ведь по сути сделали первую систему распознавания изображений. Ее же потом применили и для автоматизированной установки пластин в проекционном аппарате, только для пластин сделали окраску площадок люминофором, чтобы видеть под УФ-лучами - там ведь не сделаешь прозрачные квадраты, да и сами пометки должны пережить все технологические процессы - не только нанесение фоторезиста, но и его сушку, смывку, легирование при высоких температурах - сохранить пометку пока удалось только при работе через люминофоры и ультрафиолет, да и то - во все шаблоны пришлось встраивать площадки, которые защищали эти площадки с установочными элементами, иначе защитная пленка оксида кремния смылась бы при первом же открытии окон для диффузии или контактов. Правда, чтобы все совпадало, отметки на шаблонах и на пластинах пока делались только на одном и том же аппарате, предназначенном только для данной проекционной установки - над переносимостью отметок между аппаратами еще предстояло потрудиться, и, что самое плохое - пока было непонятно, как это сделать. Так что для каждой проекционной установки делались свои фотошаблоны, и пластины могли засвечиваться только в конкретной установке, для другой установки приходилось рисовать свои фотошаблоны, несмотря на ту же самую схемотехнику - масштабирование и гибкость производства были под вопросом.