Technical elements are at first notional but achieve realization in transformations of objects. In the process, social constraints of a more complex nature than simple goals shape the elements. This is the “secondary instrumentalization” in which the elements are given socially acceptable form and combined to make a technical device. Secondary instrumentalization proceeds by reorienting and integrating the simplified objects into a given natural and social environment. Design is the process in which relatively neutral technical elements are arranged to form a strongly biased concrete device, one that fits a specific social context. The relationship between technical elements and devices is depicted in figure 1.
An example will help to make the distinction clear. Consider the design of an everyday object such as the refrigerator. To make a refrigerator, engineers work with basic components such as electric circuits and motors, insulation, gases of a special
| Fig. 1 Relationship between technical elements and concrete devices |
type, and so on, combining them in complex ways for generating and storing cold. Each of these technologies can be broken down into even simpler decontextualized and simplified elements drawn from nature. This the level at which the primary instrumentalization is preponderant, taking the form of sheer technical insight.
However, even though these technical issues have been so thoroughly simplified and extracted from all contexts, knowledge of the components is still insufficient to completely determine design. There remain important questions such as what size to build the refrigerator, which are settled not on technical terms but rather on the basis of social principles (e.g., in terms of the likely needs of a standard family). Even the consideration of family size is not fully determining: in countries where shopping is done daily, on foot, refrigerators tend to be smaller than in those where shopping is done weekly by automobile. Thus, on essential matters, the technical design of this artifact depends on the social design of society. The refrigerator seamlessly combines these two entirely different registers of phenomena.
The two aspects of technique have a complex relationship. No implementation of a technical element is possible without some minimum secondary instrumentaliza-tion contextualizing it. Very little is required at first, perhaps no more than a socially sanctioned goal of a very general sort. Once the technical actor begins to combine these elements, more and more constraints weigh on design decisions. Some of these constraints have to do with compatibility between the various components of the new device and between the new device and other features of the technical environment. Some have to do with natural hazards or requirements that will affect the device. Others have to do with ethical-legal or aesthetic dimensions of the surrounding social world. The role of the secondary instrumen-talization grows constantly as we follow an invention from its earliest beginnings through the successive stages in which it is developed and concretized in a device that circulates socially. Indeed, even after the release of a new device to the public, it is still subject to further secondary instrumentalizations through user initiative and regulation.
The iterative character of secondary instrumentalizations explains why we have a tendency to view technology in abstraction from society. It is true that technical elements are not much affected by social constraints, but we must not interpret fully developed technologies in terms of the stripped down primary instrumentalization of the initial technical elements from which they are made.
In all cases certain aspects of a device’s design will vary depending on various sorts of demands while others will remain invariant. Those aspects that do not change include many that are invisible to the user, e.g., the type of components used, and others that have been standardized. What remains is a set of design possibilities -ways in which technical elements can be combined to create a workable device. We shall call this set of technically feasible possibilities the design space. It is from this set of possibilities that a “best” design will ultimately be selected.
Note that what is “technically feasible” depends on both the technology in question and on past history. Every design community inherits from its predecessors certain practices, assumptions, and ways of viewing the world. This “technical heritage” is at least as influential on design as any vested interest or lobby group. While in theory there may be hundreds of technically feasible design options for a particular technology, in practice professional designers typically consider only a small subset. Many technically feasible options are non-starters for reasons so obvious that they need no social justification - they are simply dismissed out of hand. These forgotten options are precisely the ones researchers should look at, if they wish to reveal the taken-for-granted assumptions and values that are part of the “black box” of technological design. As we have argued, the choice of “best” design is never a purely technical matter: designs are always underdetermined, and it is only through the application of the secondary instrumentalization that the actual form of a device is resolved.
Note that the set of available design options becomes progressively smaller as one moves “down” the design process, i.e., as more and more social requirements are added. Sometimes, however, it is possible for the black box of technological design to be reopened; when this happens, the design space for a particular device is suddenly enlarged. Controversies are one way to re-open the black box. Consider again the example of the refrigerator: at one point in time, the idea of using CFCs was not even a design question; it was simply the way things were done. However, when environmentalists made the case that CFCs were a danger to the ozone layer, this taken-for-granted assumption was made visible, and the question of “how to cool this device?” was put back on the design table.
The secondary instrumentalization exhibits significant regularities over long periods in whole societies. Standard ways of understanding individual devices and classes of devices emerge. Many of these standards reflect specific social demands that have succeeded in shaping design. These social standards form what we call the technical code of the device in question. In the example of the refrigerator, the technical code determines size as a function of the social principles governing family size. In other cases the technical code has a clearly political function, as in the deskilling and mechanization of labor during the industrial revolution. Labor process theory shows that the technical code prevailing in these transformations of work responded to problems of capitalist control of the labor force (Noble, 1977).
Technical codes are sometimes explicitly formulated as design requirements or policies, but often they are implicit in culture and training and need to be extracted from their context through sociological analysis. In either case, the researcher must formulate the technical code in an ideal typical manner as a norm governing design. The formulation of the norm as such helps to identify the process of translation between the discourse and practice of technologists and social, cultural, or political facts articulated in other discourses. This continual process of translation between technical and social is fraught with difficulty but nevertheless largely effective. In the end, this line of analysis allows the researcher to follow the evolution of a specific technology from technical elements through various design options to, finally, a concrete device (see figure 2).