Значит, оледенения непосредственно не связаны с вулканической активностью. Единственным исключением может быть оледенение, происходившее в конце карбона и начале перми.
Изменения химического состава атмосферы тоже могут заметно влиять на климат.
Особую роль в атмосфере играет углекислый газ. Он задерживает часть солнечных лучей и способствует «оттеплению» поверхности Земли. По некоторым подсчетам, уменьшение содержания углекислоты в атмосфере в два раза должно понизить среднегодовые температуры в средних широтах на четыре-пять градусов. А увеличение содержания углекислоты в два-три раза подняло бы температуру приполярных областей на восемь-девять градусов.
Много углекислого газа поступает в атмосферу через жерла вулканов. Усиление вулканической деятельности поэтому должно охлаждать атмосферу (обилие пыли) и оттеплять ее (обилие углекислоты).
Возможно, последствия этих двух явлений взаимно уничтожаются.
Но и тут, пожалуй, дело обстоит сложней.
Во-первых, нельзя забывать, что при увеличении содержания углекислого газа в атмосфере он будет усиленно поглощаться водами океанов (до установления газового равновесия в воздухе и воде). Во-вторых, углекислый газ является пищей для растений и некоторых простейших и беспозвоночных животных. Они тоже будут стремиться «выесть» излишки атмосферной углекислоты. Отмирая, эти организмы будут захоронять соединения, содержащие углерод и кислород.
Если атмосфера обогатится углекислым газом, за этим последует расцвет растений и животных, питающихся им. Позже, когда будут «съедены» запасы этого соединения, атмосфера заметно им обеднеет. Недостаток углекислоты нарушит тепловое равновесие в атмосфере в сторону общего похолодания.
В таком виде гипотеза выглядит довольно внушительно. Перед эпохами оледенений действительно наблюдалось некоторое усиление активности вулканов и расцвет растений или животных, поглощающих углекислоту. Так было в силуре (перед нижнедевонским оледенением), в карбоне, в плиоцене (незадолго до современной ледниковой эпохи). Правда, неясным остается вопрос с оледенением в кембрийское время. Но вполне возможно, что прежде него находились в расцвете микробы, питавшиеся углекислотой и не оставившие после себя явных остатков, как это случалось позже с многими скелетными животными и растениями.
Но и тут не совсем ясно: если были неоднократные наступления четвертичных ледников, то как связать это с колебаниями химического состава атмосферы? Почему могли происходить такие колебания? Непонятно…
И наконец, некоторые ученые связывают изменение климата с жизнью Мирового океана.
Известно, как сильно влияют морские теплые и холодные течения на климат прилегающих участков суши (благодаря Гольфстриму климат Скандинавии значительно мягче, чем на тех же широтах в Сибири). Направление морских течений может периодически меняться при опусканиях или поднятиях значительных территорий по берегам морей, или при переменах течения атмосферного воздуха, или при образовании новых архипелагов и т. д. Тогда изменяются климатические условия на значительных территориях. И, скажем, отсутствие Гольфстрима настолько охладит Скандинавию, что здесь вырастут ледники.
Имеются гипотезы, связывающие похолодание климата с изменением солености Мирового океана, гидросферы. В простейшем случае, если некогда общая соленость океанических вод была ниже, чем теперь, они должны были бы замерзать при температурах чуть ниже нуля. Это могло бы объяснить существование древнейших оледенений. Однако и ныне, при значительной солености океана, продолжается ледниковая эпоха.
Конечно, влияние океанических течений на климат суши велико. Но вряд ли оно может играть главную роль. Ведь оледенения охватывали огромные территории континентов, порой удаленные на тысячи километров от океанов. Да и сама смена океанических течений предполагает какие-то предшествующие события (подъемы и опускания суши, расползание материков и т. п.). Значит, эта гипотеза сводится, в конце концов, к какой-нибудь из тех, о которых мы говорили ранее.